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Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.
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NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle Γ that contains every node in V?

Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  
 Suppose G has a directed Hamiltonian cycle Γ.
 Then G' has an undirected Hamiltonian cycle (same order).

Pf.  ⇐
 Suppose G' has an undirected Hamiltonian cycle Γ'.
 Γ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

 Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or 
reverse of one.   ▪
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT ≤ P DIR-HAM-CYCLE.

Pf.   Given an instance Φ of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.
 Intuition:  traverse path i from left to right  ⇔ set variable xi = 1.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.
 For each clause:  add a node and 6 edges.
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.   Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose 3-SAT instance has satisfying assignment x*.
 Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i from left to right
– if x*i = 0, traverse row i from right to left
– for each clause Cj , there will be at least one row i in which we are 

going in "correct" direction to splice node Cj into tour
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.   Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.  ⇐
 Suppose G has a Hamiltonian cycle Γ.
 If Γ enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are connected by an 
edge e in G

– removing Cj from cycle, and replacing it with edge e yields 
Hamiltonian cycle on G - { Cj  }

 Continuing in this way, we are left with Hamiltonian cycle Γ' in
G - { C1 , C2 ,  . . . , Ck }.

 Set x*i = 1 iff Γ' traverses row i left to right.
 Since Γ visits each clause node Cj , at least one of the paths is 

traversed in "correct" direction, and each clause is satisfied.   ▪
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at least k edges?

Claim.  3-SAT ≤ P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE ≤ P LONGEST-PATH.
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE ≤ P TSP.
Pf.
 Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function

 TSP instance has tour of length ≤ n iff G is Hamiltonian.  ▪

d(u, v)  =  
 1 if (u, v) ∈  E
 2 if (u, v) ∉  E
 
 
 



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.

 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.6  Partitioning Problems



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring
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3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have the 
same color?

yes instance
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Register Allocation

Register allocation.  Assign program variables to machine register so 
that no more than k registers are used and no two program variables 
that are needed at the same time are assigned to the same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem iff 
interference graph is k-colorable.

Fact.  3-COLOR ≤ P k-REGISTER-ALLOCATION for any constant k ≥ 3.
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3-Colorability

Claim.  3-SAT ≤ P 3-COLOR.

Pf.  Given 3-SAT instance Φ, we construct an instance of 3-COLOR that 
is 3-colorable iff Φ is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.

T

B

F

x1 x1 x2 x2 xn xnx3 x3

true false

base
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

T F

B

x1 x2 x3  Ci = x1 V x2 V x3

6-node gadget

true false
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

 Ci = x1 V x2 V x3

T F

B

x1 x2 x3

not 3-colorable if all are red

true false

contradiction
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇐ Suppose 3-SAT formula Φ is satisfiable.
 Color all true literals T.
 Color a node below green node F, and node below that B.
 Color remaining middle row nodes B.
 Color remaining bottom nodes T or F as forced.  ▪

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

 Ci = x1 V x2 V x3

true false



25

3-Colorability

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

 Ci = x1 V x2 V x3

true false

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

 Ci = x1 V x2 V x3

true false



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3-COLOR, 3D-MATCHING.
 Numerical problems: SUBSET-SUM, KNAPSACK.

8.8  Numerical Problems
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Subset Sum

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

Ex:  { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 },  W = 3754.
Yes.  1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Claim.  3-SAT ≤ P SUBSET-SUM.
Pf.  Given an instance Φ of 3-SAT, we construct an instance of SUBSET-
SUM that has solution iff Φ is satisfiable.
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Subset Sum

Construction.  Given 3-SAT instance Φ with n variables and k clauses, 
form 2n + 2k decimal integers, each of n+k digits, as illustrated below.
 Include one digit for each variable xi and for each clause Cj.
 Include two numbers for each variable xi.
 Include two numbers for each clause Cj.
 Sum of each xi digit is 1;
 sum of each Cj digit is 4.

Key property. No carries possible ⇒
each digit yields one equation.

dummies to get
clause columns
to sum to 4

x2

x1

x3

0 0 0 0 1 0
0 0 0 2 0 0
0 0 0 1 0 0
0 0 1 0 0 1

0 1 0 0 1 1
0 1 0 1 0 0
1 0 0 1 0 1
1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2
0 0 0 0 0 1
0 0 0 0 2 0

1 1 1 4 4 4

¬ x1

¬ x2

¬ x3

W

10

200

100

1,001

10,011

10,100

100,101

100,010

1,110

2

1

20

111,444

C1  =  ¬ x1  ∨ x2 ∨ x3

C2 =    x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

3-SAT instance

SUBSET-SUM instance
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Subset Sum

Lemma.  Φ is satisfiable iff there exists a subset that sums to W. 
Pf. ⇒ Suppose Φ is satisfiable. 
 Choose integers corresponding to each true literal. 
 Since Φ is satisfiable, each Cj digit sums to at least 1 from xi rows.
 Choose dummy integers to make 

clause digits sum to 4.

dummies to get
clause columns
to sum to 4

x2

x1

x3

0 0 0 0 1 0
0 0 0 2 0 0
0 0 0 1 0 0
0 0 1 0 0 1

0 1 0 0 1 1
0 1 0 1 0 0
1 0 0 1 0 1
1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2
0 0 0 0 0 1
0 0 0 0 2 0

1 1 1 4 4 4

¬ x1

¬ x2

¬ x3

W

10

200

100

1,001

10,011

10,100

100,101

100,010

1,110

2

1

20

111,444

C1  =  ¬ x1  ∨ x2 ∨ x3

C2 =    x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

3-SAT instance

SUBSET-SUM instance
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Subset Sum

Lemma.  Φ is satisfiable iff there exists a subset that sums to W. 
Pf. ⇐ Suppose there is a subset that sums to W.
 Digit xi forces subset to select either row xi or ¬ xi (but not both).
 Digit Cj forces subset to select at least one literal in clause.
 Assign xi = true iff row xi selected. ▪

dummies to get
clause columns
to sum to 4

x2

x1

x3

0 0 0 0 1 0
0 0 0 2 0 0
0 0 0 1 0 0
0 0 1 0 0 1

0 1 0 0 1 1
0 1 0 1 0 0
1 0 0 1 0 1
1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2
0 0 0 0 0 1
0 0 0 0 2 0

1 1 1 4 4 4

¬ x1

¬ x2

¬ x3

W

10

200

100

1,001

10,011

10,100

100,101

100,010

1,110

2

1

20

111,444

C1  =  ¬ x1  ∨ x2 ∨ x3

C2 =    x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

3-SAT instance

SUBSET-SUM instance
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Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction


