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Overview

» Computational geometry: study algorithms for solving
geometric problems such as iR nfe 3 AR sk - ok 45 RY RR:
» computer graphics, @A B %
» robotics, L8 A P
» VLS| design, and #B+ ¥tk & 8235 it
» computer aided design. ©a%eH RIS+

» In this chapter, each input object is represented as a set of
points {p,, p,, p3,---}, where each p, = (x,, y;) and x,, y, ER.

» For example, an n-vertex polygon P =<pg, Py, Pyse-er Pp-1>-
BRhEnBY,8-1B8% P =0, 9 BIBE-R



Line-segment properties

» A convex combination of two distinct points p, = (x;, y,) and
p, = (x,, ¥,) is any point p; = (X3, y5) such that for some a in the
range 0 < a <1, we have

o P=(x.v)
» X3 =ax,+(1-a)x,, and /o Pi=(x3,y3)
v/
> yy=ay;+(1-a)y,. P2z (4a,,)

» We also write that p; = ap, + (1 - a)p,.

» The line segment p;p, is the set of convex combinations of p,
and p,.

» We call p, and p, the endpoints of segment p;p,.

» If p, is the origin (0, 0), then we can treat the directed segment
p1D> as the vector p,. puw@uBS FbS)2AME P



Cross products

P>

IP:"Plé\'i%|

5 _BR3E RS %5 0P, B i

(0,0) X

» Consider vectors p, and p,. The cross product p, x p, of p, and p,
is the signed area of the parallelogram formed by the points

(O; O)) pll p2/ and pl + p2 = (Xl +X21 y1 + yz)

det(x1 xz)
Y1 )2

= X1)V2— X2 )1

» An equivalent definition: pi1 X p»
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Clockwise, counterclockwise, or collinear ?

© O)/ clockwise
counterclockwise : >

. P, xp,: .
® <o =2 P %P koY 4
® >0 < P P. if 8343
®:0

» Question 1: Given two vectors p, and p,, is p, clockwise from
p, with respect to their common endpoint p,? If p; X p, is
» positive, then p, is clockwise from p,.

» negative, then p, is counterclockwise from p,.

» 0, then the vectors are collinear, pointing in either the same or
opposite directions.



P P,
Q<o énlﬁ&}ﬁ% @:0 a2t
Turn left or right ? ®70* deisg

P2 P2
. P 4 :
counterclockwise ! ! clockwise
) % bk ) B33
0 2 PxP, >0 O 3pxp <o

» Question 2: Given two line segments pyp; and p1p,, if we
traverse pyp; and then p{p,, do we make a left turn at
point p1?

» Check whether pyp; is clockwise or counterclockwise relative
to pop;.
» If counterclockwise, the points make a left turn.

» If clockwise, they make a right turn.



Whether two line segments intersect ?

» Question 3: Do line segments p,p; and p;p, intersect ?
Tk

» A segment p;p, straddles a line if point p, lies on one side

of the line and point p, lies on the other side. g

» A boundary case arises if p, or p, lies directly on the line. X P,

4345): PP, YRk straddle: P FoP: @ H il

» Two line segments intersect if and only if either (or both) of

the following conditions holds:

» Each segment straddles the line containing the other.

» An endpoint of one segment lies on the other segment.
(This condition comes from the boundary case.)

CREIX O HE straddle P Py P
v I
@ REATRE $HEBREL %P I><'
2
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OwemITR ‘7Lpl © P. %o P2 %5 Rl 1 Ppa v D
Pseudocode s © Py¥o Pa 5 B % FF, &
SEGMENTS-INTERSECT(p4, P, P3, P,) DIRECTION(p;, p;, py)

1. d, < DIRECTION(p;, p,, P4) 1. return (p, - p;) X (p; - p;)
2. d, <— DIRECTION(ps, p,, p5)
3. d; <— DIRECTION(p4, p,, P3)
4, d, <— DIRECTION(p4, p,, P,)
® (5 if (d,>0and d,<0)or(d, <0andd,>0)}and 2 dixdz <0
.ﬁ&i ((d; >0and d, <0) or (d; <0and d, >0)) dsxda <0
6. return TRUE
(7. elseif d, = 0 and ON-SEGMENT(p;, p,, p;) ON-SEGMENT (p,, P, py)
#)s return TRUE e !
lseif d. = 0 and ON.S 1. if min(x, xj) < X, < max(x;, xj) and
“lo. elseif d, = 0 and ON-SEGMENT(p;, p,, p,) min(y, y) < y, < max(y, y) )&
10. r.eturn TRUE 2. return TRUE xy [ B
11.  elseif d; = 0 and ON-SEGMENT(p,, p,, P3) N else return EALSE 5-3?‘&4;
12. return TRUE Dty
\13. elseif d, = 0 and ON-SEGMENT(p,, p,, P4) P Ps
14, return TRUE \<’
15 Ps

else return FALSE P
2



di

(p1—P3) X (ps—p3) <0 ® i d4 (p1—p3) X (ps—p3) <0 ® D4
P (p4—py) X (py—pp <0 P (P4—p1) X (pr—py) <0
e _ P> & &l
P, P \.
o a (Py—=p3) X (ps—p3) <0
® ) d % g /
(P3=p1) X (Py=p1) >0 ¢ di (P3—p1) X (p3—p)) >0
ds P3 (Prp3) X (P4=p3) >0 AR py 2
P
(a) Pode (b)
QP FoPs R 43 PipaHid ?dixdz <o
@ Ps#oPan P& P, i Idixdaco
p. ,
Pi ! P P4
P3
P Ps
P3
(c) (d)

* Two line segments intersect if and only if conditions (a) or (c) holds.

In (b), segment p3p, straddles the line containing p;p,, but segment p;p,
does not straddle the line containing p3p, .

In (d), psis collinear with p1p,, but it is not between p, and p,. The
segments do not intersect.
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Determining if two line segments intersect ?

» This section presents an algorithm for determining whether any
two line segments in a set of segments intersect.

» The algorithm uses a technique known as sweeping. % 18t

» The algorithm runs in O(nlgn) time, where n is the number of
segments we are given. v : %8 E3 B9 1@ ¢«

L O RBA- IR AT AR
» In sweeping, an imaginary vertical sweep line passes through

the given set of geometric objects, usually from left to right.

» We assume that 1B2:%
» no input segment is vertical; and :3BEL R

» no three input segments intersect at a single point. 2E® %444
WEIT-R



S, >+¢S2 i case (Déicase@

» Two segments s; and s,, are comparable at x if the vertical
sweep line with x-coordinate x intersects both of them. : ¢

. . . ' case ®
» We say that s, is above s, at x, written s, 2, s,, if ><-.5‘
» the intersection of s; with the sweep line at x is higher than the
intersection of s, with the same sweep line; or Y
» if s, and s, intersect at the sweep line. >.'<5Z co®

¢ % HAD A L 4R :
» Sweeping algorithms typically manage two sets of data:

» The sweep-line status gives the relationships among the objects
intersected by the sweep line. sweep-line status: ¥5 E3 8y £ T RA1%

» The event-point schedule is a sequence of points, called event
point, ordered from left to right, that defines the halting positions of
the sweep line. eyent - point schedule: 43 214 E b E ZHHER



(a) (b)

» In (a), we have
» a2.c,a2,b,b2ca2c,andb2,c.

» segment d is comparable with no other segment shown.

dRE o HibREEFREMD L
» In (b), one can see that

» when segments e and f intersect, their orders are reversed: we have
e fbutfz e BebhfB 9%, PARRET



BE RS %S
Event-point schedule & Sweep-line status

» Event-point schedule: ygit S 1 x B4 b4 % 5 Helk
» Each segment endpoint is an event point.

» We sort the segment endpoints by increasing x-coordinate and

proceed from left to right. gz ZTHR » U3 ¥R £3 hoX sweep-line Status
Eiuﬁav-é 23R E33 8% Sweep - line Status
» When we encounter a segment’s

» Left endpoint: insert the segment into the sweep-line status;

» Right endpoint: delete the segment into the sweep-line status.

» Whenever two segments first become consecutive, we check
whether they intersect. e s _ -p 4% e 49 Ep
B2 EMBE



Operations for sweep-line status

» We require the following operations for sweep-line status T:
» INSERT(T, s): insert segment s into T.
» DELETE(T, s): delete segment s from T. D18 < By £ - 1@
» ABOVE(T, s): return the segment immediately above segmentsin T.

» BELOW(T, s): return the segment immediately below segment sin T.
®1% s T -18
» Each of the above operations can be performed in O(lgn) time

using red-black trees. 1 ' & - 18 wh 1¢ R B & 0% B3/

» Recall that the red-black-tree operations in Chapter 13 involve
comparing keys.
» We can replace the key comparisons by comparisons that use cross

products to determine the relative ordering of two segments (see
Exercise 33.2-2). % key B+ 4 B1%, 5 32



Segment-intersection pseudocode

ANY-SEGMENTS-INTERSECT(S) Y3 3% 2 HEF

1.
2.

o v ok~ w

T—@

sort the endpoints of the segments in S from left to right,

breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower

y-coordinates first
for each point p in the sorted list of endpoints
if p is the left endpoint of a segment s
INSERT(T, s)
if (ABOVE(T, s) exists and intersects s)
or (BELOW(T, s) exists and intersects s)
return TRUE
if p is the right endpoint of a segment s

if both ABOVE(T, s) and BELOW(T, s) exist
and ABOVE(T, s) intersects BELOW(T, s)

return TRUE
DELETE(T, s)
return FALSE

O(nlogn)

Zih2 © insert (T,s)
® 1% % 8 % 3o obovelT.s)
%o below (7,5) ¥ %

> 2n-(0(logn)+0(1))

IS %% & abovelT.s)%0
below(T.s) R 340%

® delete (T.9)

Time complexity: O(nlogn)



DT - o pie
_ 3B 2ETB%
The execution of ANY-SEGMENTS-INTERSECT

d d )
’ z S a c S .'.", Pox P, .
b ¢ b ¢ R s 2 POt 45
b b P L F ? + i
> P t @ ¥4

time

» Each dashed line is the sweep line at an event point.

» The intersection of segments d and b is found when segment
cis deleted. ¢ Ba% i 2 delete B3 # 18 b d 48 %
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Finding the convex hull Thed? 8T

» The convex hull of a set Q of points is the smallest convex
polygon P for which each point in Q is either on the boundary of
P or in its interior. . 305k 5 Grahams scan. O(nlgn)
Jarviss mavch: O (nh)

py o, pr o ps
p8 . L] p3
pP2°

/p,
Po
» Two algorithms:
» Graham's scan, runs in O(nlgn) time, n is the number of points.

» Jarvis's march, runs in O(nh) time, where h is the number of vertices
of the convex hull.



Graham's scan

» Both Graham's scan and Jarvis's march use a technique called

rotational sweep, processing vertices in the order of the polar

angles. Grohams scan # Jarvig’s march 342 @ votational sweep i 1® #8375
(AedE X142 48

» Graham's scan :
» By maintaining a stack S of candidate points.
» Each point of the input set Q is pushed once onto the stack.

» The points that are not vertices of CH(Q) are eventually popped
from the stack.

» When the algorithm terminates, stack S contains exactly the vertices
of CH(Q).



Graham's scan pseudocode

GRAHAM-SCAN(Q)

1. let p, be the point in Q with the minimum y-coordinate, . D S P
or the leftmost such point in case of a tie } O(n) #£9 b & ® Po

2. let (py, p,,---» P,,) be the remaining pointsin Q,

sorted by polar angle in counterclockwise order around p, oln

(if more than one point has the same angle, remove all but (nlogn)

the one that is farthest from p,)
3. let S be an empty stack Y2 P . P2 Pm Ll FoPp BY BB DA Tl xHE
4. PUSH(p,, S) ~Rhox-% BERr@IFA LR
5. PUSH(py, S) O(1) © 5 ox
j E:rsy(izéi)o m 2342 % = £ delete I 5?.1: Dz
8. while the angle formed by points NEXT-TO-TOP(S), TOP(S),

and p, makes a nonleft turn . O(n)

9. PoP(S)
10. PUSH(p;, S)

11. return S

Time complexity: O(nlogn)
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In (h), the right turn at angle Zp,pgp, causes p, to be popped, and then the
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» Jarvis's march computes the convex hull of a set Q of points by a
technique known as package wrapping (or gift wrapping).

» Jarvis's march :

» Find the lowest point p, and the highest point p,. ¥ R 1& £ Po 0 & 5 % P«
» Construct the right chain of CH(Q). ®©r Bt # right chain

We start with p,, the next convex hull vertex p, has the smallest polar
angle with respectto p,. wiph 28 PER)BE
Similarly, p, has the smallest polar angle with respect to p,, and so on.

When we reach the highest vertex p,, we have constructed the right
chain of CH(Q). P BE2E  PERIAE .. &kukhit

» Construct the left chain of CH(Q) similarly. @ P<fus#s left choin



KEEEPIRSE P
' 0 B 45 34 vight chain
| B P B 453 left choin

o P e E Ep 2,% a3 42

;{Po
- ——

BB PRRAR
left chain * right chain ") h%z’ﬁ ‘ Pz Eﬂd\ﬁ@ ‘“1&&%*3.

» Time complexity: O(nh), where h is the # of vertices of CH(Q).
» Each comparison between polar angles takes O(1) time.
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Finding the closest pair of points

» Consider the problem of finding the closest pair of points in
a set Q of n 2 2 points.

» "Closest" refers to the usual euclidean distance: the distance
between points p, = (x;, y,) and p, = (x,, y,) is

\/(XI_X2)2+(y1_y2)2'
» A brute-force algorithm simply looks at all the (2) pairs of
points. 24 :% . 0w

» In this section, we shall describe a divide-and-conquer
algorithm whose running time is described by the familiar
recurrence T(n) = 2T(n/2) + O(n). 43® divide ond conguer - O(n2gn)

» Thus, this algorithm uses only O(nlgn) time.



» The input of each recursive: 43 PEIE = dbE 1R e Fu & H¢
» PCQ p:ﬁMl,;é lﬂ"ngé’qé-\-‘L‘ﬂi"?lii*'%&)d\@lk-ﬂ\i

» X :contains all the points in P and the points is sorted by
monotonically increasing x-coordinates.
» Y :contains all the points in P and the points is sorted by
monotonically increasing y-coordinates.
» If |P| <3, perform the brute-force method. 4o%® 1p1¢3, @ F h:E

» If |P| >3, recursive invocation carries out the divide-and-
conguer paradigm as follows. 4@ (P1>3 BztoT



» Divide: Y3PtniP.IoPr, 1408 tnF14R
Find a vertical line £ that bisects the point set P into two sets P, and
Pgsuch that |P | = [[P[/2], |Pgl = [IP]/2].
Divide X into arrays X, and Xz. Y% « 5 Ft %. %o X R
Divide Yinto arrays Y, and Ys. 43 Y 5 R Y Fo Yr

» Conquer: 5318% P, %o Pr , 5= min (b1, 5R)
Let the closest-pair distances returned for P, and P, be 6, and é,,
respectively, and let 6 = min(6,, ).

» Combine: 2,918t 0@-84P., - £%Pe
The closest pair is either the pair with distance 4, or one pointin P,
and the other in P, whose distance is less than 6.
If the latter happens, both points of the pair must be within é units
oflinel. yPREMEO, 5L IE-T <5
To find such a pair, if one exists, the algorithm does the following:



P - = - ’
Bo< " HWEPEMERABY D
_— * P 244 BN B8R, REEERIAER LI,
. e t18-2R BRI 1R
: o : }—)P
N — 26 _ Po<i
?S i *pp * l o o ;
i | . b ? coincident points,
° % : e ' T: \‘ one in P,
: ! ° S : : one in Pp
K | | :
I L . .
i i : | coincident points,
° : : $+ 0//{ one in Py,
| ®| | ¢ ! i ! one in Pp
(a) (b)

1. It creates an array Y’, which is the array Y with all points not in the
26-wide vertical strip removed. y'. yg y b2 4 2 5- wided by ¥ 8%

2. For each point p in the array Y’, try to find points in Y’ that are within 6
units of p. (Only the 7 points in Y’ that follow p need to be considered.)

3. Suppose &' is closest-pair distance found over all pairs of pointsin Y'.
If &' < 6, then return 6. Otherwise, return 6.



» Main difficulty:

» Ensure that arrays X, Xz, Y,, and Y,, which are passed to recursive
calls, are sorted by the proper coordinate.

» Ensure that array Y’ is sorted by y-coordinate.

@%ﬁé %\-'E'XL:'XR"JL’HR' ‘J'B}""“ﬁiﬁl



» Method:

» Presort the pints in Q by the proper coordinate to get X and Y before
the first recursive call.

» In each recursive call:
Divide P into P, and P, O(n) time. 34 tn B ik Y30 Yr B35 22
The following pseudocode gives the idea to get Y,, and Y,from Y.

1 lengthlY,] < length[Y,] <~ O

2. fori<1tolengthlY] 33y & §1® 24t 4@ @

3 if Y[i] € P,

4, then length[Y,] < length[Y,] + 1 }%,3'; P A% Y.
5 Y, [length[Y,]] < YIi] . .

6 else length[Y,] < length[Y,] + 1 B35 Pr32TI YR
7 Yq [length[Y,]] < Yli]

Similar pseudocode works for forming arrays X, X, and Y'.



Running time 43 0 @ % b IoY 4o HE . 6165 B

» We get T’(n) = T(n) + O(nlgn). Tw): recursive step B983 R3l
» T(n): the running time of each recursive step.
» T’(n): the running time of the entire algorithm.

» We can rewrite the recurrence as

_|2T(n/2)+0(n) if n>3,
o) if n<1.

» Thus, T(n) = O(nlgn) and T’(n) = O(nlgn).



