Algorithms Chapter 33 Computational Geometry

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- ▶ Line-segment properties 線段的性質
- Determining whether any pair of segments intersects
 新斯平面上線段是否相交
- ▶ Finding the convex hull ₩凸 ?
- Finding the closest pair of points 平面上 找距離最近兩支

Overview

- Computational geometry: study algorithms for solving geometric problems such as
 計算几何学解決-些几何問题:
 - Computer graphics, 电船 8 学
 - ▶ robotics, 机器 ∧ 学
 - VLSI design, and 超大積体电路設計
 - ▶ computer aided design. 电腦輔助設計
- In this chapter, each input object is represented as a set of points {p₁, p₂, p₃,...}, where each p_i = (x_i, y_i) and x_i, y_i ∈ **R**.
 - For example, an *n*-vertex polygon P = <p₀, p₁, p₂,..., p_{n-1}>.
 假設有n個臭,每-個臭P; =(xi, yi)為平面上-臭

Line-segment properties

• A convex combination of two distinct points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ is any point $p_3 = (x_3, y_3)$ such that for some α in the range $0 \le \alpha \le 1$, we have

•
$$x_3 = \alpha x_1 + (1 - \alpha) x_2$$
, and

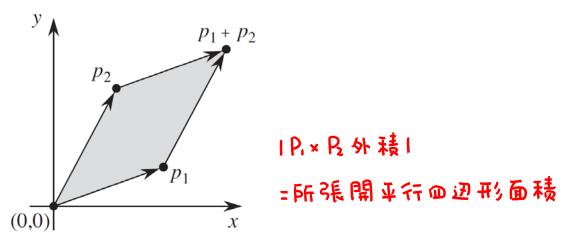
•
$$y_3 = \alpha y_1 + (1 - \alpha) y_2$$
.

$$P_{3} = (x_{1}, y_{1})$$

$$P_{3} = (x_{3}, y_{3})$$

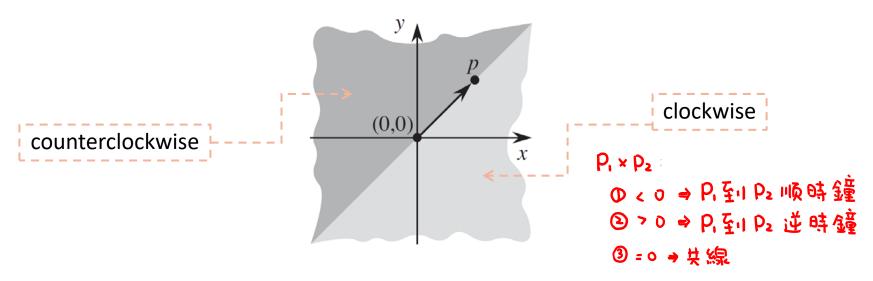
$$P_{2} = (x_{2}, y_{2})$$

- We also write that $p_3 = \alpha p_1 + (1 \alpha)p_2$.
- The line segment p₁p₂ is the set of convex combinations of p₁ and p₂.
- We call p_1 and p_2 the **endpoints of** segment $\overline{p_1 p_2}$.
- If p_1 is the origin (0, 0), then we can treat the directed segment $\overrightarrow{p_1p_2}$ as the vector p_2 . R地象在原桌, 成 可视点向量 R

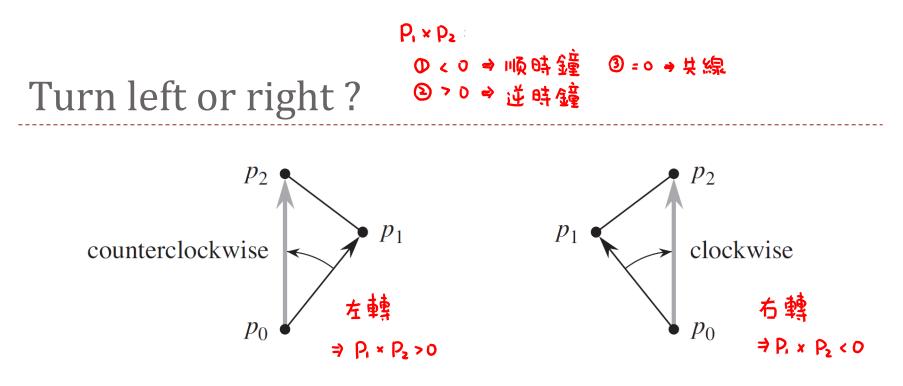


- Consider vectors p₁ and p₂. The cross product p₁ × p₂ of p₁ and p₂ is the signed area of the parallelogram formed by the points (0, 0), p₁, p₂, and p₁ + p₂ = (x₁ + x₂, y₁ + y₂).
- An equivalent definition: $p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$ $= x_1 y_2 - x_2 y_1$ $= -p_2 \times p_1 .$

P. 돌마오 是 顺時 鐘 或 逆時 鐘 Clockwise, counterclockwise, or collinear ?



- Question 1: Given two vectors p_1 and p_2 , is p_1 clockwise from p_2 with respect to their common endpoint p_0 ? If $p_1 \times p_2$ is
 - ▶ **positive**, then *p*₁ is clockwise from *p*₂.
 - **negative**, then p_1 is counterclockwise from p_2 .
 - **0**, then the vectors are **collinear**, pointing in either the same or opposite directions.

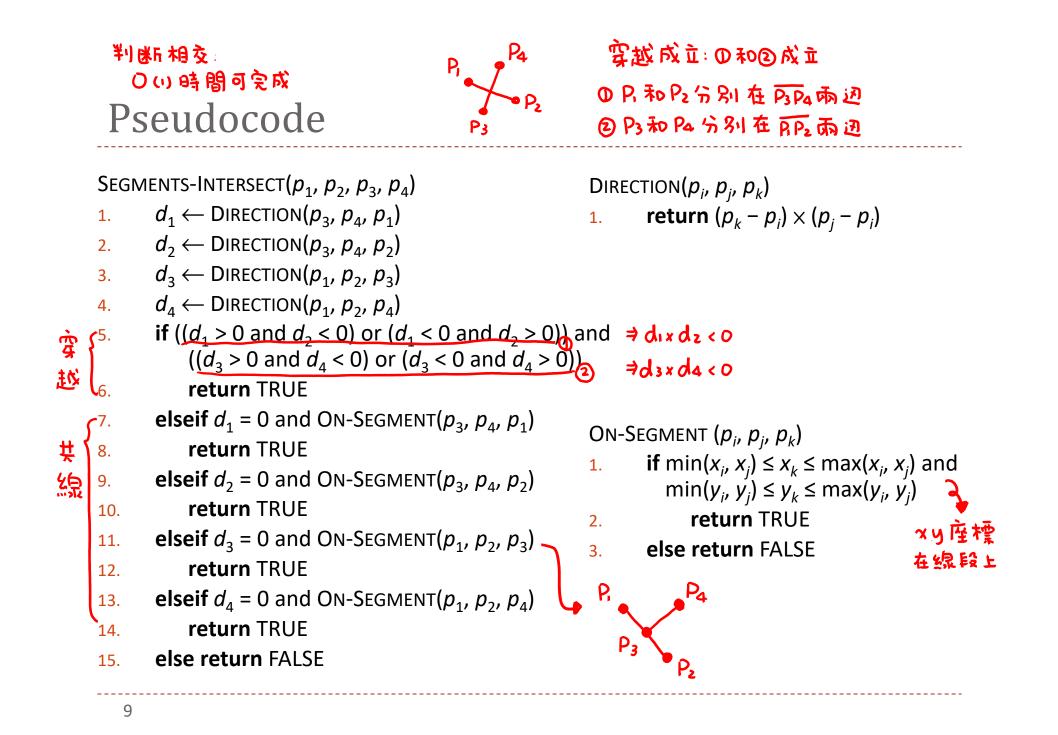


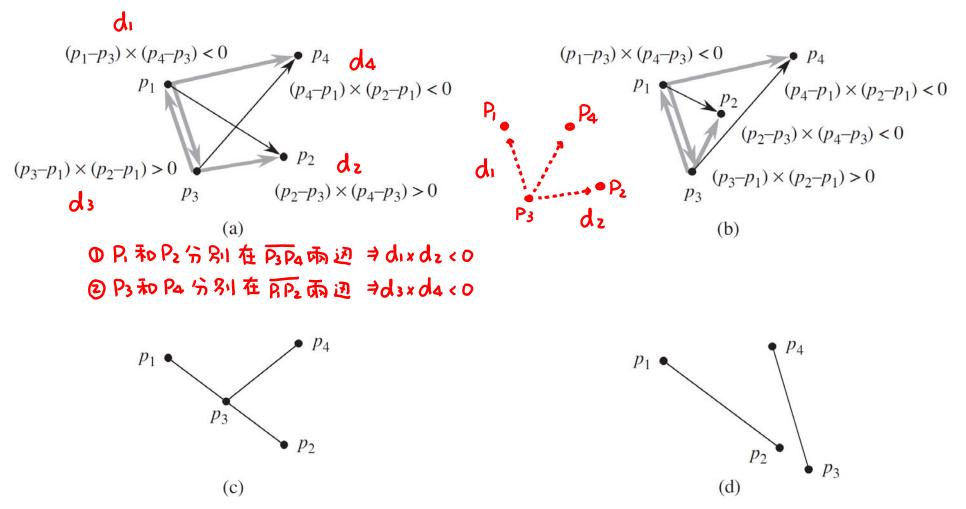
- Question 2: Given two line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$, if we traverse $\overline{p_0p_1}$ and then $\overline{p_1p_2}$, do we make a left turn at point p1?
 - Check whether $\overrightarrow{p_0p_2}$ is clockwise or counterclockwise relative to $\overrightarrow{p_0p_1}$.
 - If **counterclockwise**, the points make a left turn.
 - If **clockwise**, they make a right turn.

Whether two line segments intersect?

- Question 3: Do line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$ intersect ?
- A segment $\overline{p_1p_2}$ straddles a line if point p_1 lies on one side of the line and point p_2 lies on the other side.
 - A boundary case arises if p₁ or p₂ lies directly on the line.
 特例: R或及在線上
 straddle: R和及在線ඛ端
- Two line segments intersect if and only if either (or both) of the following conditions holds:
 - Each segment straddles the line containing the other.
 - An endpoint of one segment lies on the other segment. (This condition comes from the boundary case.)

```
線段相交。O举生straddle
② 線段A端桌落在B線段上
```



- Two line segments intersect if and only if conditions (a) or (c) holds.
- In (b), segment $\overline{p_3p_4}$ straddles the line containing $\overline{p_1p_2}$, but segment $\overline{p_1p_2}$ does not straddle the line containing $\overline{p_3p_4}$.
- In (d), p₃ is collinear with p₁p₂, but it is not between p₁ and p₂. The segments do not intersect.

Outline

- Line-segment properties
- Determining whether any pair of segments intersects
 判断平面上線段是否相交
- Finding the convex hull
- Finding the closest pair of points

Determining if two line segments intersect ?

- This section presents an algorithm for determining whether any two line segments in a set of segments intersect.
- ▶ The algorithm uses a technique known as sweeping. 掃描法
- The algorithm runs in O(nlgn) time, where n is the number of segments we are given. n:線段的個 to
- 想像有-條掃描線由左至右掃 In sweeping, an imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
- We assume that 保設
 - ▶ no input segment is vertical; and 没有垂 血線
 - no three input segments intersect at a single point. 不会発生三條線 相交於一桌

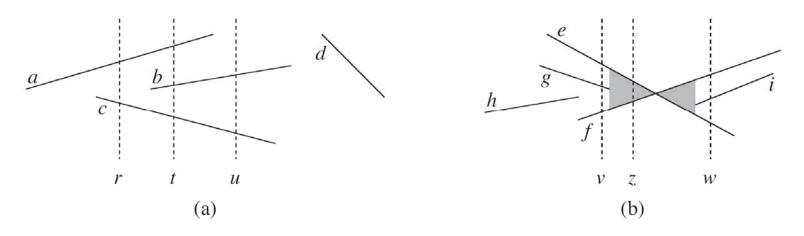
Sı≥xSz if case O ot case @

Sz caseo

Ordering segments & Moving the sweep line $_{1/2}$

- Two segments s₁ and s₂, are comparable at x if the vertical sweep line with x-coordinate x intersects both of them.
- We say that s_1 is **above** s_2 at x, written $s_1 \ge_x s_2$, if
 - the intersection of s₁ with the sweep line at x is higher than the intersection of s₂ with the same sweep line; or
 - ▶ if s₁ and s₂ intersect at the sweep line. 維護兩個资料結構
- Sweeping algorithms typically manage two sets of data:
 - The sweep-line status gives the relationships among the objects intersected by the sweep line. sweep-line status: 線段的上下開係
 - The event-point schedule is a sequence of points, called event point, ordered from left to right, that defines the halting positions of the sweep line. event - point schedule: 將事14桌由左至右排序

Ordering segments & Moving the sweep $line_{2/2}$



- In (a), we have
 - $a \ge_r c, a \ge_t b, b \ge_t c, a \ge_t c, and b \ge_u c.$
 - segment d is comparable with no other segment shown.

d線段和其他線段不能相比

- In (b), one can see that
 - ▶ when segments *e* and *f* intersect, their orders are reversed: we have $e \ge_v f$ but $f \ge_w e$. 當 $e \Rightarrow_v f$ but $f \ge_w e$. 當 $e \Rightarrow_v f$ but $f \ge_w e$. 當 $e \Rightarrow_v f$ but $f \ge_w e$.

端实就是事件实

Event-point schedule & Sweep-line status

Event-point schedule: 將端桌依 x 座標由左至右 排序

- Each segment endpoint is an event point.
- We sort the segment endpoints by increasing x-coordinate and proceed from left to right. 遇到 左端莫> 將線段かみ sweep-line Status
 右端莫>將線段移除 sweep-line Status

When we encounter a segment's

- Left endpoint: insert the segment into the sweep-line status;
- Right endpoint: delete the segment into the sweep-line status.
- Whenever two segments first become consecutive, we check whether they intersect. 當線段第一次彼此相鄰 ⇒檢測是否相交

Operations for sweep-line status

• We require the following operations for sweep-line status *T*:

- ▶ INSERT(*T*, *s*): insert segment *s* into *T*.
- ▶ DELETE(*T*, *s*): delete segment *s* from *T*. \square (\square (\square) \square) \square (\square) \square) \square) \square) \square (\square) \square
- ABOVE(*T*, *s*): return the segment immediately above segment *s* in *T*.
- ▶ BELOW(*T*, *s*): return the segment immediately below segment *s* in *T*. 回 1 なら下 – 1 個
- Each of the above operations can be performed in O(lgn) time using red-black trees. 以上每一個动作都只需要O(妈n)時間
- Recall that the red-black-tree operations in Chapter 13 involve comparing keys.
 - We can replace the key comparisons by comparisons that use cross products to determine the relative ordering of two segments (see Exercise 33.2-2). 原本 key 有大小 開作,這裡

用 cross product 來判定線段的上下關係

Segment-intersection pseudocode

ANY-SEGMENTS-INTERSECT(S) 將端阜排序

- 1. $T \leftarrow \emptyset$
- 2. sort the endpoints of the segments in S from left to right, breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
- **for** each point *p* in the sorted list of endpoints
- 4. **if** *p* is the left endpoint of a segment *s*
- 5. INSERT(T, s)
- 6. **if** (ABOVE(*T*, *s*) exists and intersects *s*) or (BELOW(*T*, *s*) exists and intersects *s*)
 - **return** TRUE
- 8. **if** *p* is the right endpoint of a segment *s*
- 9. **if** both ABOVE(*T*, *s*) and BELOW(*T*, *s*) exist and ABOVE(*T*, *s*) intersects BELOW(*T*, *s*)
- 10. return TRUE
- **11**. DELETE(*T*, *s*)
- 12. return FALSE

```
ver

左端矣: ① insert (T, s)

② 檢查是否和 above(T, s)

和 below (T, s) 相交
```

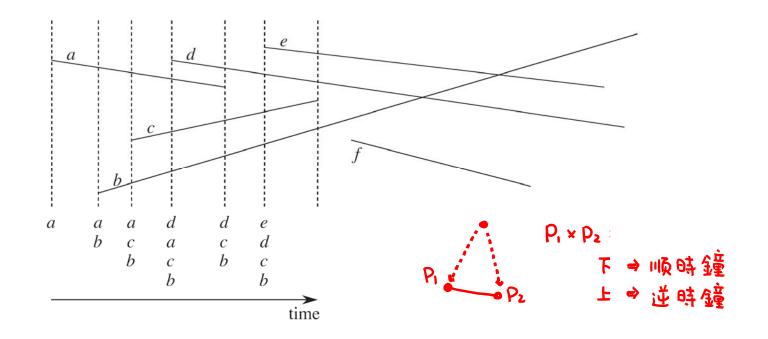
```
\geq 2n \cdot (O(\log n) + O(1))
```

```
右端矣: 0 梅查above(T,s)和
below(T,s)是否相交
③ delete(T,s)
```

Time complexity: $O(n \log n)$

7.

當線段第-次彼此相鄰 ヲ檢測是を相交 The execution of ANY-SEGMENTS-INTERSECT



- Each dashed line is the sweep line at an event point.
- The intersection of segments d and b is found when segment c is deleted. C 的右端 \$ delete 時 祥現 b d 相交

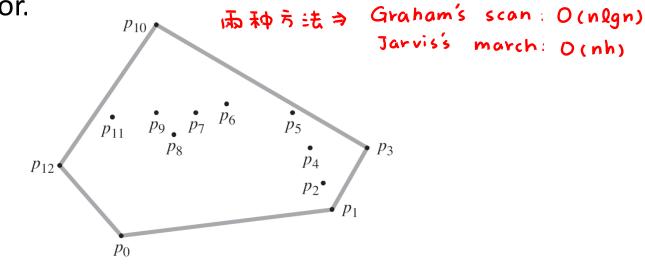
Outline

- Line-segment properties
- Determining whether any pair of segments intersects
- Finding the convex hull
- Finding the closest pair of points

Finding the convex hull

凸包:最小凸多边形可將 全部東西包進去

The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.
The set a Graham's scene Q (near)



Two algorithms:

- ▶ Graham's scan, runs in *O*(*n* lg*n*) time, *n* is the number of points.
- Jarvis's march, runs in O(nh) time, where h is the number of vertices of the convex hull.

Graham's scan

 Both Graham's scan and Jarvis's march use a technique called rotational sweep, processing vertices in the order of the polar angles. Graham's scan 和 Jarvis's march 都使用 rotational sweep 這個技巧 (旋轉式標描)

Graham's scan :

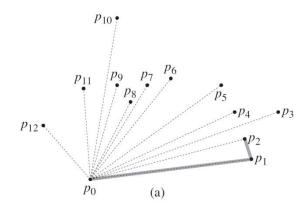
- By maintaining a stack *S* of candidate points.
- Each point of the input set *Q* is pushed once onto the stack.
- The points that are not vertices of CH(Q) are eventually popped from the stack.
- When the algorithm terminates, stack S contains exactly the vertices of CH(Q).

Graham's scan pseudocode

GRAHAM-SCAN(Q)

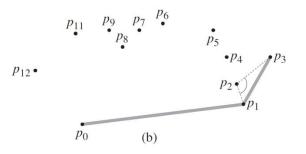
_	(
1.	let p ₀ be the point in Q with the minimum y-coordinate, or the leftmost such point in case of a tie O(n) 找り軸最小的莫Po			
2.	let $(p_1, p_2,, p_m)$ be the remaining points in Q , sorted by polar angle in counterclockwise order around p_0 (if more than one point has the same angle, remove all but the one that is farthest from p_0)			
3.	let S be an empty stack		將 P. P. ··· Pm LX 和 Po BS	角度由小到大排
4.	$D_{II}(n S)$		- 沢加入-宾, 檢查最上面是否為左轉 昆 > 0k 否 > 將第二字 delete 在至最上面三字為左轉	
5.	$PUSH(p_1, S)$	<i>O</i> (1)		
6.	$PUSH(p_2, S)$	J		
7.	for <i>i</i> ← 3 to <i>m</i>			ᄤᆠᅭᄪᆞᆃᄷᇯᄺᅚᆥᇊ
8.	while the angle formed by points NEXT-TO-TOP(S), TOP(S), and p_i makes a nonleft turn			
	and p _i makes a nonleft turn			O(n)
9.	POP(S)			
10.	Ризн(<i>p_i, S</i>)			
11.	return S			

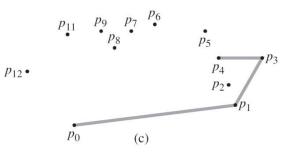
Time complexity: $O(n \log n)$

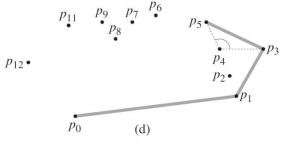


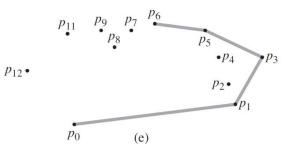
 $p_{10} \bullet$

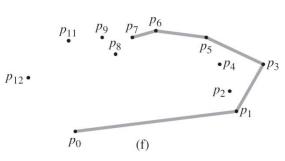
 $p_{10} \bullet$

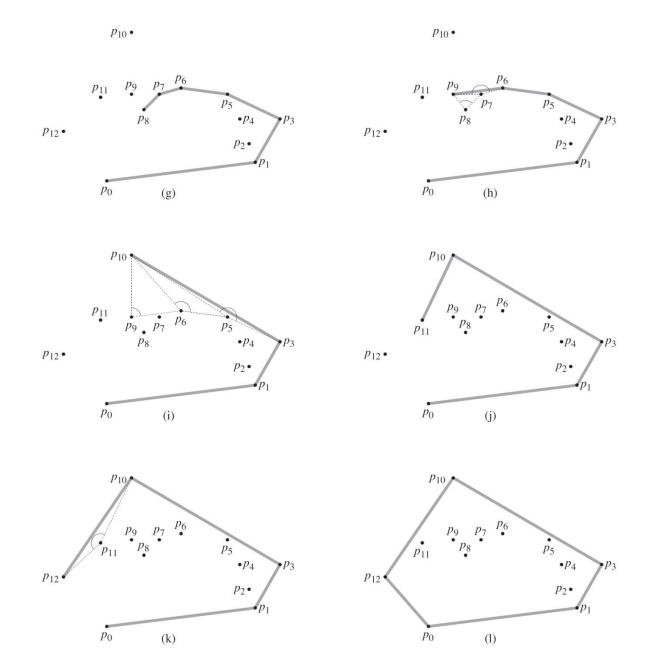








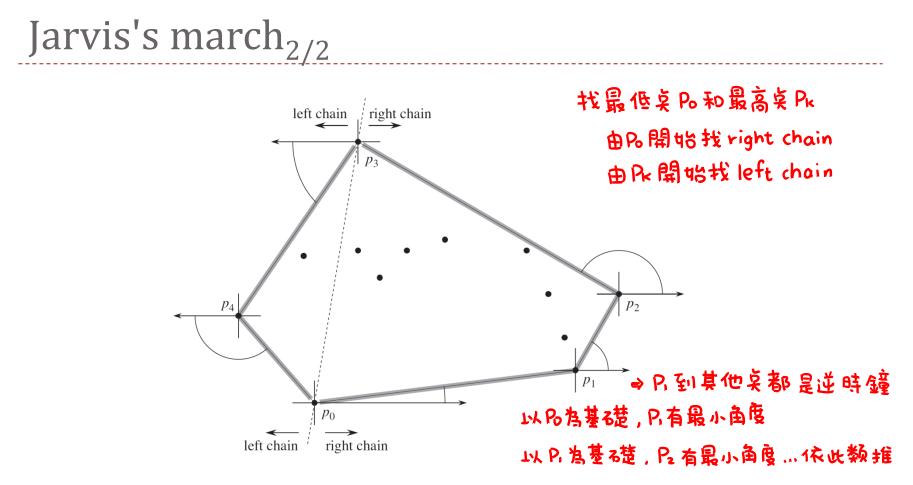




In (h), the right turn at angle $\angle p_7 p_8 p_9$ causes p_8 to be popped, and then the right turn at angle $\angle p_6 p_7 p_9$ causes p_7 to be popped.

Jarvis's march_{1/2} 礼物回裝法

- Jarvis's march computes the convex hull of a set Q of points by a technique known as package wrapping (or gift wrapping).
- Jarvis's march :
 - Find the lowest point p_0 and the highest point p_k . 找最低桌 Po 和最高桌 Pk
 - ▶ Construct the **right chain** of CH(Q). 由 開始找 right chain
 - We start with p₀, the next convex hull vertex p₁ has the smallest polar angle with respect to p₀. 以 6 為基礎, 凡有最小角度
 - Similarly, p_2 has the smallest polar angle with respect to p_1 , and so on.
 - When we reach the highest vertex p_k, we have constructed the right chain of CH(Q). 以 P. 為基。莅, P. 有最小角度...1衣此数 推
 - ▶ Construct the left chain of CH(Q) similarly. 由保開始找 left chain



- Time complexity: O(nh), where h is the # of vertices of CH(Q).
 - Each comparison between polar angles takes *O*(1) time.

Outline

- Line-segment properties
- Determining whether any pair of segments intersects
- Finding the convex hull
- Finding the closest pair of points 平面上 找距離最近兩支

平面上找距離最近兩桌

Finding the closest pair of points

- Consider the problem of finding the closest pair of points in a set Q of n ≥ 2 points.
 - "Closest" refers to the usual euclidean distance: the distance between points p₁ = (x₁, y₁) and p₂ = (x₂, y₂) is

 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}.$

- ► A brute-force algorithm simply looks at all the $\binom{n}{2}$ pairs of points. $\Re_{n} \notin 0$ (n²)
- In this section, we shall describe a divide-and-conquer algorithm whose running time is described by the familiar recurrence T(n) = 2T(n/2) + O(n). 使用divide and conguer O(nlgn)

Thus, this algorithm uses only O(n lg n) time.

The divide-and-conquer algorithm $_{1/3}$

- The input of each recursive:
 - ▶ P⊆Q. P:部份桌

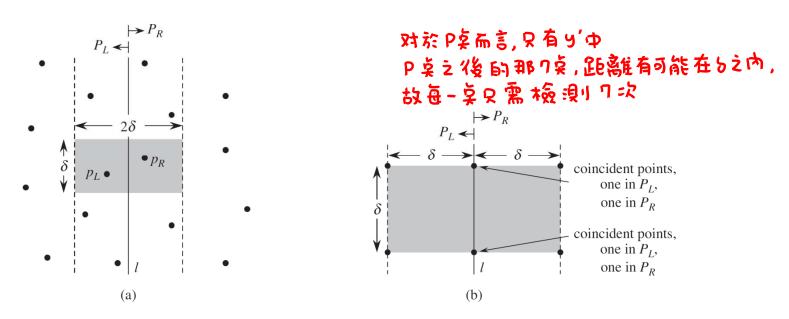
X:將P的桌以X軸座標由小到大排 Y:將P的桌以Y軸座標由小到大排

- X : contains all the points in P and the points is sorted by monotonically increasing x-coordinates.
- Y : contains all the points in P and the points is sorted by monotonically increasing y-coordinates.
- ▶ If $|P| \leq 3$, perform the brute-force method. 40 및 $|P| \leq 3$, \square ℝ h t.
- If |P| > 3, recursive invocation carries out the divide-andconquer paradigm as follows. 如果 IPI > 3,方法如下

The divide-and-conquer algorithm_{2/3}

- ▶ Divide: 將P切成凡和PR,以2為切割線
 - Find a vertical line ℓ that bisects the point set P into two sets P_L and P_R such that $|P_L| = \lceil |P|/2 \rceil$, $|P_R| = \lfloor |P|/2 \rfloor$.
 - ▶ Divide X into arrays X_L and X_R . 將な分成 XL 和 XR
 - Divide Y into arrays Y_L and Y_R . 將 Y 分成 Y レ 和 Y R
- Conquer: 分別解 PL 和 PR, 5= min (bL, 5R)
 - Let the closest-pair distances returned for P_L and P_R be δ_L and δ_R , respectively, and let $\delta = \min(\delta_L, \delta_R)$.
- ▶ Combine: 最小可能性 0 5 @ 卓在 PL, 奌在 PR
 - The closest pair is either the pair with distance δ , or one point in P_L and the other in P_R whose distance is less than δ .
 - If the latter happens, both points of the pair must be within δ units of line l. ψ果是情形②, 与义距离 - 定< s</p>
 - To find such a pair, if one exists, the algorithm does the following:

The divide-and-conquer algorithm_{3/3}



- 1. It creates an array Y', which is the array Y with all points not in the 2δ -wide vertical strip removed. $y': \frac{1}{2} \frac{1$
- 2. For each point p in the array Y', try to find points in Y' that are within δ units of p. (Only the **7** points in Y' that follow p need to be considered.)
- 3. Suppose δ' is closest-pair distance found over all pairs of points in Y'. If $\delta' < \delta$, then return δ' . Otherwise, return δ .

Implementation_{1/2}

Main difficulty:

- Ensure that arrays X_L , X_R , Y_L , and Y_R , which are passed to recursive calls, are sorted by the proper coordinate.
- Ensure that array Y' is sorted by y-coordinate.

困難矣: 资結XL, XR, YL, YR, Y'的維護

Implementation_{2/2}

Method:

- Presort the pints in Q by the proper coordinate to get X and Y before the first recursive call.
- In each recursive call:
 - ▶ Divide P into P_L and P_R → O(n) time. <mark>將y切割成 ソレ 和 ソĸ 的</mark>方法
 - The following pseudocode gives the idea to get Y_L , and Y_R from Y.

1.

$$length[Y_L] \leftarrow length[Y_R] \leftarrow 0$$

 2.
 for $i \leftarrow 1$ to $length[Y]$
 文寸 y 上 每 1個 桌 1生 捻 須川

 3.
 if $Y[i] \in P_L$

 4.
 then $length[Y_L] \leftarrow length[Y_L] + 1$
 屬 於 PL 放 돌비 YL

 5.
 Y_L [length[Y_L]] $\leftarrow Y[i]$

 6.
 else $length[Y_R] \leftarrow length[Y_R] + 1$
 屬 於 PR 放 돌비 YR

 7.
 Y_R [length[Y_R]] $\leftarrow Y[i]$

• Similar pseudocode works for forming arrays X_L , X_R , and Y'.

Running time 將Q用X軸和Y軸排序的時間

• We get $T'(n) = T(n) + O(n \lg n)$. T(n): recursive step 的時間

- ► *T*(*n*): the running time of each recursive step.
- T'(n): the running time of the entire algorithm.
- We can rewrite the recurrence as

$$T(n) = \begin{cases} 2T(n/2) + O(n) & \text{if } n > 3, \\ O(1) & \text{if } n \le 1. \end{cases}$$

• Thus,
$$T(n) = O(n \lg n)$$
 and $T'(n) = O(n \lg n)$.