
AlgorithmsChapter 25All-Pairs Shortest Paths
Department of Computer Science and EngineeringNational Taiwan Ocean University

Associate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.com

Outline
 Shortest paths and matrix multiplication
 The Floyd-Warshall algorithm
 Johnson’s algorithm for sparse graphs

2

Overview1/2
 Input: A weighted directed graph G = (V, E).

 Output: An n × n matrix of shortest-path distances δ(u,v).

 Could run BELLMAN-FORD once from each vertex:
 O(n2m)－which is O(n4) if the graph is dense (E = Θ(n2)).

 If no negative-weight edges, could run Dijkstra's algorithm
algorithm once from each vertex:
 O(nm lgn) with binary heap－O(n3lgn) if dense.
 O(n2lgn + nm) with Fibonacci heap－O(n3) if dense.

 We’ll see how to do in O(n3) in all cases, with no fancy data
structure.

3

Overview2/2
 Input: The adjacency matrix W of a weighted directed

graph G = (V, E), where

 Negative weights – “allow”. Negative-weight cycles – “no”.

 Output: A matrix D = (dij), where dij = δ(i, j).

4

∉≠∞
∈≠

=
=

.),(and if
,),(and if),(edge of weight the

 , if 0

Ejiji
Ejijiji

ji
wij

Shortest paths and matrix multiplication
 A dynamic programming approach
 Optimal substructure: subpaths of shortest paths are shortest

paths.
 Recursive solution: Let = weight of shortest path from i to j

that contains at most m edges.
 m = 0, there is a shortest path from i to j with no edges

if and only if i = j .

 m ≥ 1,

 m = 1, we have
5

)(m
ijl

≠∞
=

=
. if
, if 0)0(

ji
ji

lij

).0 since(}{min

}}{min,min{
)1(

1

)1(

1

)1()(

=+=

+=
−

≤≤

−

≤≤

−

jjkj
m

iknk

kj
m

iknk

m
ij

m
ij

wwl

wlll

.)1(
ijij wl =

Compute a solution bottom-up1/2

 Compute L(1), L(2),…, L(n−1), where L(1) = W.

 Go from L(m−1) to L(m).

 L for L(m−1) and L’ for L(m).

 Time: Θ(n3).
6

EXTEND-SHORTEST-PATHS(L,W)
1. n ← rows[L]
2. let be an n × n matrix
3. for i ← 1 to n
4. for j ← 1 to n
5. ← ∞
6. for k ← 1 to n
7. ←
8. return L’

'
ijl

},min{ '
kjikij wll +

)(' '
ijlL =

...),()1()()1(===== +− n
ij

n
ij

n
ijij llljid δ

All simple shortest paths
contain at most n − 1 edges.

'
ijl

Compute a solution bottom-up2/2
 Observation: EXTEND is like matrix multiplication: C = A ∙ B.
 L → A, W → B, L’ → C
 min → +, + → *, ∞ → 0

 L(1) = L(0)．W = W, L(2) = L(1)．W = W(2) , L(3) = L(2)．W = W(3)

L(n−1) = L(n−2)．W = W(n−1).
 Call EXTEND n−1 times, D = W(n−1) can be computed in Θ(n4) time.

8

SQUARE-MATRIX-MULTIPLY(A,B)
1. n ← rows[A]
2. let C be an n × n matrix
3. for i ← 1 to n
4. for j ← 1 to n
5. cij ← 0
6. for k ← 1 to n
7. cij ← cij + aik * bkj
8. return C

EXTEND-SHORTEST-PATHS(L,W)
1. n ← rows[L]
2. let be an n × n matrix
3. for i ← 1 to n
4. for j ← 1 to n
5. ← ∞
6. for k ← 1 to n
7. ←
8. return L’

'
ijl

},min{ '
kjikij wll +

)(' '
ijlL =

'
ijl

Improving the running time
 Goal: to compute W(n−1).
 Don’t need to compute all the intermediate W(1) , W(2), . . . , W(n− 2).
 Could compute W2 = W．W, W(4) = W(2)．W(2),

W(8) = W(4)．W(4) , . . . ,
 Only lg(n−1) matrix products is computed.
 Since 2lg(n−1) ≥ n−1, the final product is equal to W(n−1).

9

 1)1lg(1)1lg()1lg(222 −−−−−

⋅=
nnn

WWW

FASTER-ALL-PAIRS-SHORTEST-PATHS(W)
1. n ← rows[W]
2. L(1) ← W
3. m ← 1
4. while m < n − 1
5. do L(2m) = EXTEND-SHORTEST-PATHS(L(m), L(m))
6. m ← 2m
7. return L(m)

lg(n − 1) · Θ(n3)

O(1)

Time : Θ(n3lgn)

Outline
 Shortest paths and matrix multiplication
 The Floyd-Warshall algorithm
 Johnson’s algorithm for sparse graphs

10

Floyd-Warshall algorithm
 A different dynamic-programming approach
 Let be the weight of a shortest path from i to j with all

intermediate vertices in {1, 2, . . . , k}.
 Consider a shortest path p from i to j with all intermediate

vertices in {1, 2, . . . , k}:
 If k is not an intermediate vertex, then all intermediate vertices

of p are in {1, 2, . . . , k−1}.
 If k is an intermediate vertex, then

11

)(k
ijd

Recursive formulation
 A recursive solution:

 , because have no intermediate vertices.
 Such a path has ≤ 1 edge.

 Goal:
 Because for any path, all intermediate vertices are in the set

{1, 2,..., n}.

12

≥+

=
=

−−− .1 if),min(

,0 if
)1()1()1(

)(

kddd

k w
d k

kj
k

ik
k

ij

ijk
ij

ijij wd =)0(

)()()(n
ij

n dD =

Compute bottom up
 Compute the values in order of increasing values of k.

 Time: Θ(n3).

13

)(k
ijd

FLOYD-WARSHALL(W)
1. n ← rows[W]
2. D(0) ← W
3. for k ← 1 to n
4. for i ← 1 to n
5. for j ← 1 to n
6.
7. return D(n)

),min()1()1()1()(−−− += k
kj

k
ik

k
ij

k
ij dddd

Θ(n3)

O(1)

Constructing a shortest path
 𝜋() is the predecessor of vertex 𝑗 on a shortest path from vertex 𝑗 with all intermediate vertices in the set {1,2, ⋯ , 𝑘}.

 For 𝑘 ≥ 1, we have

14

𝜋() = ൝ NIL if 𝑖 = 𝑗, or 𝑤 = ∞, 𝑖 if 𝑖 ≠ 𝑗, and 𝑤 < ∞.
𝜋() = ቐ𝜋(ିଵ) if 𝑑(ିଵ) ≤ 𝑑ିଵ + 𝑑(ିଵ), 𝜋ିଵ if 𝑑ିଵ > 𝑑ିଵ + 𝑑(ିଵ).

Transitive closure1/2
 The transitive closure of G is defined as the graph G* = (V, E*),

where

 We give two methods to compute the transitive closure of a
graph in the following, both in Θ(n3) time.

 Method 1:
 Assign a weight of 1 to each edge, then run FLOYD-WARSHALL.
 If there is a path from vertex i to vertex j, we get dij < n.
 Otherwise, we get dij = ∞.

18

E* = {(i, j) : there is a path from vertex i to vertex j in G}.

Transitive closure2/2
 Method 2:
 Save time and space in practice.
 Substitute other values and operators in FLOYD-WARSHALL.

 min → ∨ (OR)
 + → ∧ (AND)

19

∈=
∉≠

=
.),(or if 1
,),(and if0)0(

Ejiji
Ejiji

t ji

).()1()1()1()(−−− ∧∨= k
ki

k
ik

k
ij

k
ij tttt

=

.otherwise 0
 }, 2,..., {1, in vertices

 teintermedia all with to from patha exists thereif 1
)(k

j i
t k
ij

Compute bottom up
 Compute the values in order of increasing values of k.

 Time: Θ(n3).
 Only 1 bit is required for each .
 G* can be used to determine the strongly connected components of G.

20

)(k
ijt

TRANSITIVE-CLOSURE(G)
1. n ← |V[G]|
2. for i ← 1 to n
3. for j ← 1 to n
4. if i = j or (i, j)∈ E[G]
5.

6. else
7. for k ← 1 to n
8. for i ← 1 to n
9. for j ← 1 to n
10.
11. return T(n)

)()1()1()1()(−−− ∧∨← k
kj

k
ik

k
ij

k
ij tttt

Θ(n2)

O(1)

1)0(←ijt
0)0(←ijt

Θ(n3)

)(k
ijt

