02 REAH: Okruskal BR3E

® Prim :B B 2 .

SRR Ve AIEANIRT I S8 Algorlthms
Chapter 23

Minimum Spanning Trees

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Growing a minimum spanning tree <

» The algorithms of Kruskal and Prim
WwEWX LD

» Problem:
» A town has a set of houses and a set of roads.
» Aroad connects 2 and only 2 houses.
» A road connecting houses u and v has a repair cost w(u, v).
» Goal: Repair enough roads such that wtu,v): 4248 & IR BR B A %

everyone stays connected, and D1 . @RI REBFNDJ0 B33
total repair cost is minimum. i3 P9 8% WP, 3o b PA 2R

» Model as a graph:
» Undirected graph G = (V, E). Weight w(u, v) on each edge (u, v) EE.
» Find T € E such that

vaph
T connects all vertices (Tis a spanning tree), and house —— vertex
W(T)= > w(u,v) is minimized. voad 2%, edge
(uV)ET

» A spanning tree whose weight is minimum over all spanning
trees is called a minimum-spanning-tree, or MIST.
HOERA GEERALARIP DB D A A B A

» Example of such a graph:

11 5 . -
I e . HH3BM (c.e)42 R-msT

! 6 I % By weight 1R
» In this example, there is more than one MST.
» Replace edge (e, f) by (c, e).
» Get a different spanning tree with the same weight.

Growing a minimum spanning tree

» Some properties of an MST: 3@ 4% R
D45 A n-110 2
» Ithas [V| -1 edges. 45 A n-1418 2

@ :% & cycle
» It has no cycles. ® 2 off -
» It might not be unique.
B0t o
» Building up the solution ped, -Rho-1BRIBD,
. : 1208 5 T
» We will build a set A of edges. 1247 2% S A K-8
MST BY 3% 3

» Initially, A has no edges.

» As we add edges to A, maintain a loop invariant:
Loop invariant: A is a subset of some MST.

» Add only edges that maintain the invariant.

» If Ais a subset of some MST, an edge (u, v) is safe for A if and only if
AU{(u, v)}is also a subset of some MST.

Generic MST algorithm

GENERIC-MST(G, w)

1. A—Q

2 while A does not form a spanning tree AR hoxn-1BRID

3 find an edge (u, v) thatis safe for A & %1 A 2 — 18 spanning tree
4. A — AUu{(u, v)}

5 return A

IR ARER - DM p3ER
» Use the loop invariant to show that this generic algorithm

works. _PRUSABTES BRE (PAIFDESIES)
» Initialization: The empty set trivially satisfies the loop invariant.

» Maintenance: Since we add only safe edges, A remains a subset
of some MST. BA A B BT D, PRIL NI

» Termination: All edges added to A are in an MST, so when we
stop, A is a spanning tree that is also an MST.

Finding a safe edge, ,, w#z2

» Edge (c, f) has the lowest weight of any edge in the graph.
» Isitsafe for A=@? Az b 0%, weight RHBYDR R 55 P o§?

5

» Intuitively: & # % :£. 2

S
> LetSclV. MST® - T % edge 43 s o v-s 18 @
» In any MST, there has to be one edge that connects S with V - S.

v-$

2

2

» Why not choose the edge with minimum weight? & weignt BB A 7

» Acut (S, V-S)is a partition of vertices into disjoint sets
SandV-S. (ut H3vamsoHv-s HIBES

» Edge (u, v) EE crosses cut (S, V-S5) if one endpoint isin S and

the otherisin V- S. (wv) crosses (S, v-5)

» A cutrespects A if and only if no edge in A crosses the cut.
cut respects A: A byedge FR IR SDEN v-sb

S v-S] light edge . weight - By edge

Finding a safe edge, , (7 =)

» An edge is a light edge crossing a cut if and only if its weight is
minimum over all edges crossing the cut.

» For a given cut, there can be more than 1 light edge crossing it.

» An example:

light edge - (d,¢)
» The edge (d, c) is the unique light edge crossing the cut. A: :§ % By edge

» A subset A of the edges is shaded; note that the cut (S, V-5) * SN
respects A, since no edge of A crosses the cut. (s, v-5) respects A

S v-$

Theorem 23.1, , PO Bib edge B8 % S DK vs

» Theorem 23.1
Let A be a subset of some MST, (S, V-S) be a cut that respects
A, and (u,v) be a light edge crossing (S, V-S5).
Then (u,v) is safe for A. light edge (u,v) 33 A/ E 2 %6

» Proof:
» Let Tbe an MST thatincludes A. T: -1® ® & A By ™MsT
» If T contains (u, v), done. 4&p11: (u,v)eT 3 2R dErs 2 (uvI&T
» Otherwise, suppose that T does not contain (u, v). ? :;f%a‘uﬁmg ETT
» WEe’'ll construct a different MST T’ that includes Au{(u,v)}.
» Since T is an MST, it contains a unique path p between u and v.
» Path p must cross the cut (S, V-S) at least once.

BT R MST. B kA - 4F poth o £ 8 4E w0 v
P% cvoss (S,v-S) & —:R

f»

EL‘; » Clearly, we have w(u,v) < w(x, y).

| » LetT'=T-{(x, y)}U{(u,v)}.

2 » Clearly, T’ is also a spanning tree.

S I w(T’) =w(T) - w(x,y) + w(u,v) Sw(T).2 7' MsT

| » T’isalsoan MST, B (u,v) weight $&us

G » It remains to show that (u, v) is safe for A.

AR \) » Since the cgt respects A,
‘*E;") edge (x, y) is not in A.

; » ACTand(x, Y)€A=>ACT-{(x, y)}ST. OAET’
 |» AU{u VST O™
By O+® 3 032

'» Since T’ is an MST, (u, v) is safe for A.

Ly R+ 2 ALT(UWYE T/

Properties of GENERIC-MST &&% mst88:teate’

» S0, in GENERIC-MST, we have: qu@

>

vV v VvV v

A is a forest containing connected components.

Initially, each component is a single vertex. G043 A E

Any safe edge merges two of these components into one. &% % connected

: %E D4 43 2 18 connecred component component B
Each component is a tree. £ 18 N

Since an MST has exactly | V| -1 edges, the for loop
iterates | V| -1 times.

Equivalently, after adding | V| -1 safe edges, we’re down to just

one component.

22 XNBAUs el A= 3B D BRILEB "n’ 4@ connected components
L83 n-1 2R hoANEED, R Pl - 1B connected component

Corollary 23.2

» Corollary 23.2
If C=(V,, E;) is a connected component in the forest
G, =(V,A)and (u, v) is a light edge connecting C to some
other component in G,, then (u,v) is safe for A.

» Proof:

» The cut (V,, V- V,) respects A, and (u, v) is a light edge for this
cut.

» Therefore, (u,v) is safe for A.

(w,v) 2 ¢ 43 5b3 B9 edge D weight B/ BY
9 cut(ve, V-Vc) respects A+ (u,v) % light edge

a ~
(UM ETEDR

Outline

» Growing a minimum spanning tree

» The algorithms of Kruskal and Prim

» G=(V, E)is aconnected, undirected, weighted graph.
w:E—R.

» Starts with each vertex being its own component.

» Repeatedly merges two components into one by choosing the
light edge that connects them.

» Scans the set of edges in monotonically increasing order by
weight.

» Uses a disjoint-set data structure to determine whether an
edge connects vertices in different components.

12 B disjoint - set L 32 * 4 B Rk cycle

(wv) 2 F 38218 %) component B3 edge P wenght E'se /N BY

MST-KRUSKAL(G, w
(6w 9 (u,v) 25 43 o+;2 B9 edge P weight Be / BY

1. A<0Q
2. for each vertex vE€ V[G] d (w,v) & ®E)
3. MAKE-SET(v) 3 kvuskal's -.qg _@, % 2 ¢ % e
4. sort the edges of E into nondecreasing order by weight w
5. for each edge (u, v) EE, taken in nondecreasing order by weight
6. if FIND-SET(u) # FIND-SET(v) H4th components
7. A— AU{(u, v)} 0O
8. UNION(u, v) Q/ ng
9. return A ©
S v-S

» In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph.

» The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components.

Analysis

» Time complexity make - sets: n =2
» Initialize A: O(1) union: n-l =2
: find: 2m =R
» First for loop: n MAKE-SETs
» Sort E: O(mlgm) %R
» Second for loop: O(m) FIND-SETS and UNIONS union- and - £ind B3 83 R

» Using the disjoint-set data structure in Chapter 21.
» Time complexity: O((n+m) a(n)) + O(mlgm)
» Since G is connected, m>n-1= O(ma(n)) + O(mlgm)
» a(n) =0(lgn) = O(lgm).
» Therefore, total time is O(mlgm).
» m<n?=lgm=0(2lgn)=0(lgn).
» Therefore, O(mlgn) time.

light edge
» G=(V, E)is aconnected, undirected, weighted graph.
» Builds one tree, so A is always a tree.
» Starts from an arbitrary “root”.

» At each step, find a light edge crossing cut (V,, V- V,),
where V, = vertices that A is incident on.

» Add this edge to A.

MST-PRIM(G, w, r) key [wl: J0'S by B 12 36 &

1 for each u € V[G] TT(uw): w by & 38

2 key[u] ¢ oo @: heop, })AQ & Kt light edge
3 nfu] < NIL

4. key[r] < O

5. Q< V[G]

6 whileQ# @

7 U < EXTRACT-MIN(Q)

8 for each v €Adj[u] toPu B XpRE B u o EEER T %5
9. if vEQ and w(u, v) < key|v] 3® I .ﬁ@@ v B'a:é’ in O EE%&

10. nfv] < u ® X 18

11. key[v] < w(u, v)

» In Prim's algorithm, the set A forms a single tree.

» The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

O voot , 7t o BA4S 49 E
2 < 7 E N - 1B 424

(a)

Analysis

» Time complexity depends on how the priority queue is
implemented. HWEN B2 Enp
» Suppose Q is a binary heap. (worst case) PILEiR BBIEm=R
» Initialize Q and first for loop: O(n) binavy heap: Extract - min , 0(2gh)
» while loop: n EXTRACT-MIN calls = O(nlgn) Decrease - key, O(4gn)
> < mDECREASE-KEY calls = O(mlgn)

» Total: O(mlgn)

» Suppose Q is a Fibonacci heap. (amortized)
» Initialize Q and first for loop: O(n) Fibonoacci heap: Extract - min, O(2gn)
» while loop: n EXTRACT-MIN calls = O(nlgn) Decrease- key , 00:)
p < mDECREASE-KEY calls = O(m)
» Total: O(m +nlgn)

