
AlgorithmsChapter 23Minimum Spanning TreesAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Growing a minimum spanning tree
 The algorithms of Kruskal and Prim

2

Overview1/2
 Problem:
 A town has a set of houses and a set of roads.
 A road connects 2 and only 2 houses.
 A road connecting houses u and v has a repair cost w(u, v).
 Goal: Repair enough roads such that

 everyone stays connected, and
 total repair cost is minimum.

 Model as a graph:
 Undirected graph G = (V, E). Weight w(u,v) on each edge (u,v)∈E.
 Find T ⊆ E such that

 T connects all vertices (T is a spanning tree), and
 is minimized.

3

∈

=
Tvu

vuwTw
),(

),()(

Overview2/2
 A spanning tree whose weight is minimum over all spanning

trees is called a minimum-spanning-tree, or MST.

 Example of such a graph:

 In this example, there is more than one MST.
 Replace edge (e,f) by (c,e).
 Get a different spanning tree with the same weight.

4

Growing a minimum spanning tree
 Some properties of an MST:
 It has |V| − 1 edges.
 It has no cycles.
 It might not be unique.

 Building up the solution
 We will build a set A of edges.
 Initially, A has no edges.
 As we add edges to A, maintain a loop invariant:

Loop invariant: A is a subset of some MST.
 Add only edges that maintain the invariant.
 If A is a subset of some MST, an edge (u, v) is safe for A if and only if

A∪{(u, v)} is also a subset of some MST.
5

Generic MST algorithm
 Use the loop invariant to show that this generic algorithm

works.
 Initialization: The empty set trivially satisfies the loop invariant.
 Maintenance: Since we add only safe edges, A remains a subset

of some MST.
 Termination: All edges added to A are in an MST, so when we

stop, A is a spanning tree that is also an MST.

6

GENERIC-MST(G, w)
1. A ← Ø
2. while A does not form a spanning tree
3. find an edge (u, v) that is safe for A
4. A ← A∪ {(u, v)}
5. return A

Finding a safe edge1/2
 Edge (c, f) has the lowest weight of any edge in the graph.
 Is it safe for A = ∅?

 Intuitively:
 Let S⊂V.
 In any MST, there has to be one edge that connects S with V − S.
 Why not choose the edge with minimum weight?

 A cut (S,V−S) is a partition of vertices into disjoint sets
S and V − S.

 Edge (u, v)∈E crosses cut (S,V−S) if one endpoint is in S and
the other is in V − S.

 A cut respects A if and only if no edge in A crosses the cut.

7

Finding a safe edge2/2
 An edge is a light edge crossing a cut if and only if its weight is

minimum over all edges crossing the cut.
 For a given cut, there can be more than 1 light edge crossing it.

 An example:
 The edge (d,c) is the unique light edge crossing the cut.
 A subset A of the edges is shaded; note that the cut (S, V−S)

respects A, since no edge of A crosses the cut.

8

Theorem 23.11/2
 Theorem 23.1

Let A be a subset of some MST, (S,V−S) be a cut that respects
A, and (u,v) be a light edge crossing (S,V−S).
Then (u,v) is safe for A.

 Proof:
 Let T be an MST that includes A.
 If T contains (u, v), done.
 Otherwise, suppose that T does not contain (u, v).
 We’ll construct a different MST T’ that includes A∪{(u,v)}.
 Since T is an MST, it contains a unique path p between u and v.
 Path p must cross the cut (S,V−S) at least once.

9

 Let (x, y) be an edge of p that crosses the cut.
 Clearly, we have w(u,v) ≤ w(x, y).
 Let T’ = T − {(x, y)}∪{(u,v)}.
 Clearly, T’ is also a spanning tree.
 w(T’) = w(T) − w(x,y) + w(u,v) ≤ w(T).
 T’ is also an MST.
 It remains to show that (u, v) is safe for A.
 Since the cut respects A,

edge (x, y) is not in A.
 A ⊆ T and (x, y) ∉ A ⇒ A ⊆ T − {(x, y)} ⊆ T’.
 A ∪ {(u, v)} ⊆ T’.
 Since T’ is an MST, (u, v) is safe for A.

Theorem 23.12/2

10

 So, in GENERIC-MST, we have:
 A is a forest containing connected components.
 Initially, each component is a single vertex.
 Any safe edge merges two of these components into one.
 Each component is a tree.
 Since an MST has exactly |V|−1 edges, the for loop

iterates |V|−1 times.
 Equivalently, after adding |V|−1 safe edges, we’re down to just

one component.

Properties of GENERIC-MST

11

Corollary 23.2

12

 Corollary 23.2
If C = (VC, EC) is a connected component in the forest
GA = (V, A) and (u, v) is a light edge connecting C to some
other component in GA, then (u,v) is safe for A.

 Proof:
 The cut (VC, V − VC) respects A, and (u, v) is a light edge for this

cut.
 Therefore, (u,v) is safe for A.

Outline
 Growing a minimum spanning tree
 The algorithms of Kruskal and Prim

13

Kruskal’s algorithm1/2

14

 G = (V, E) is a connected, undirected, weighted graph.
w : E → R.

 Starts with each vertex being its own component.
 Repeatedly merges two components into one by choosing the

light edge that connects them.
 Scans the set of edges in monotonically increasing order by

weight.
 Uses a disjoint-set data structure to determine whether an

edge connects vertices in different components.

Kruskal’s algorithm2/2

15

 In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph.

 The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components.

MST-KRUSKAL(G, w)
1. A ← Ø
2. for each vertex v∈V[G]
3. MAKE-SET(v)
4. sort the edges of E into nondecreasing order by weight w
5. for each edge (u, v)∈E, taken in nondecreasing order by weight
6. if FIND-SET(u) ≠ FIND-SET(v)
7. A ← A∪ {(u, v)}
8. UNION(u, v)
9. return A

Analysis
 Time complexity
 Initialize A: O(1)
 First for loop: n MAKE-SETs
 Sort E: O(m lgm)
 Second for loop: O(m) FIND-SETs and UNIONs

 Using the disjoint-set data structure in Chapter 21.
 Time complexity: O((n+m) α(n)) + O(m lgm)
 Since G is connected, m ≥ n − 1 ⇒ O(mα(n)) + O(m lgm)
 α(n) = O(lgn) = O(lgm).
 Therefore, total time is O(m lgm).
 m ≤ n2 ⇒ lgm = O(2lgn) = O(lgn).
 Therefore, O(m lgn) time.

18

Prim’s algorithm1/2

19

 G = (V, E) is a connected, undirected, weighted graph.
 Builds one tree, so A is always a tree.
 Starts from an arbitrary “root”.
 At each step, find a light edge crossing cut (VA, V − VA),

where VA = vertices that A is incident on.
 Add this edge to A.

Prim’s algorithm2/2

20

 In Prim's algorithm, the set A forms a single tree.
 The safe edge added to A is always a least-weight edge

connecting the tree to a vertex not in the tree.

MST-PRIM(G, w, r)
1. for each u∈V[G]
2. key[u] ← ∞
3. π[u] ← NIL
4. key[r] ← 0
5. Q ← V [G]
6. while Q ≠ Ø
7. u ← EXTRACT-MIN(Q)
8. for each v ∈Adj[u]
9. if v∈Q and w(u, v) < key[v]
10. π[v] ← u
11. key[v] ← w(u, v)

10
28

14 16

25
24

18
12

22

10

∞

25 ∞

∞∞
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

28

25 ∞

∞∞
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

28

0 22

∞24
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

0

0 0

014
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

16

0 0

018
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

28

0 0

1218
0w

x

y

z

p
q

r

Analysis
 Time complexity depends on how the priority queue is

implemented.
 Suppose Q is a binary heap.
 Initialize Q and first for loop: O(n)
 while loop: n EXTRACT-MIN calls ⇒ O(n lgn)
 ≤ mDECREASE-KEY calls ⇒ O(m lgn)
 Total: O(m lgn)

 Suppose Q is a Fibonacci heap.
 Initialize Q and first for loop: O(n)
 while loop: n EXTRACT-MIN calls ⇒ O(n lgn)
 ≤ mDECREASE-KEY calls ⇒ O(m)
 Total: O(m +n lgn)

24

(amortized)

(worst case)

