
AlgorithmsChapter 23Minimum Spanning TreesAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Growing a minimum spanning tree
 The algorithms of Kruskal and Prim

2

Overview1/2
 Problem:
 A town has a set of houses and a set of roads.
 A road connects 2 and only 2 houses.
 A road connecting houses u and v has a repair cost w(u, v).
 Goal: Repair enough roads such that

 everyone stays connected, and
 total repair cost is minimum.

 Model as a graph:
 Undirected graph G = (V, E). Weight w(u,v) on each edge (u,v)∈E.
 Find T ⊆ E such that

 T connects all vertices (T is a spanning tree), and
 is minimized.

3


∈

=
Tvu

vuwTw
),(

),()(

Overview2/2
 A spanning tree whose weight is minimum over all spanning

trees is called a minimum-spanning-tree, or MST.

 Example of such a graph:

 In this example, there is more than one MST.
 Replace edge (e,f) by (c,e).
 Get a different spanning tree with the same weight.

4

Growing a minimum spanning tree
 Some properties of an MST:
 It has |V| − 1 edges.
 It has no cycles.
 It might not be unique.

 Building up the solution
 We will build a set A of edges.
 Initially, A has no edges.
 As we add edges to A, maintain a loop invariant:

Loop invariant: A is a subset of some MST.
 Add only edges that maintain the invariant.
 If A is a subset of some MST, an edge (u, v) is safe for A if and only if

A∪{(u, v)} is also a subset of some MST.
5

Generic MST algorithm
 Use the loop invariant to show that this generic algorithm

works.
 Initialization: The empty set trivially satisfies the loop invariant.
 Maintenance: Since we add only safe edges, A remains a subset

of some MST.
 Termination: All edges added to A are in an MST, so when we

stop, A is a spanning tree that is also an MST.

6

GENERIC-MST(G, w)
1. A ← Ø
2. while A does not form a spanning tree
3. find an edge (u, v) that is safe for A
4. A ← A∪ {(u, v)}
5. return A

Finding a safe edge1/2
 Edge (c, f) has the lowest weight of any edge in the graph.
 Is it safe for A = ∅?

 Intuitively:
 Let S⊂V.
 In any MST, there has to be one edge that connects S with V − S.
 Why not choose the edge with minimum weight?

 A cut (S,V−S) is a partition of vertices into disjoint sets
S and V − S.

 Edge (u, v)∈E crosses cut (S,V−S) if one endpoint is in S and
the other is in V − S.

 A cut respects A if and only if no edge in A crosses the cut.

7

Finding a safe edge2/2
 An edge is a light edge crossing a cut if and only if its weight is

minimum over all edges crossing the cut.
 For a given cut, there can be more than 1 light edge crossing it.

 An example:
 The edge (d,c) is the unique light edge crossing the cut.
 A subset A of the edges is shaded; note that the cut (S, V−S)

respects A, since no edge of A crosses the cut.

8

Theorem 23.11/2
 Theorem 23.1

Let A be a subset of some MST, (S,V−S) be a cut that respects
A, and (u,v) be a light edge crossing (S,V−S).
Then (u,v) is safe for A.

 Proof:
 Let T be an MST that includes A.
 If T contains (u, v), done.
 Otherwise, suppose that T does not contain (u, v).
 We’ll construct a different MST T’ that includes A∪{(u,v)}.
 Since T is an MST, it contains a unique path p between u and v.
 Path p must cross the cut (S,V−S) at least once.

9

 Let (x, y) be an edge of p that crosses the cut.
 Clearly, we have w(u,v) ≤ w(x, y).
 Let T’ = T − {(x, y)}∪{(u,v)}.
 Clearly, T’ is also a spanning tree.
 w(T’) = w(T) − w(x,y) + w(u,v) ≤ w(T).
 T’ is also an MST.
 It remains to show that (u, v) is safe for A.
 Since the cut respects A,

edge (x, y) is not in A.
 A ⊆ T and (x, y) ∉ A ⇒ A ⊆ T − {(x, y)} ⊆ T’.
 A ∪ {(u, v)} ⊆ T’.
 Since T’ is an MST, (u, v) is safe for A.

Theorem 23.12/2

10

 So, in GENERIC-MST, we have:
 A is a forest containing connected components.
 Initially, each component is a single vertex.
 Any safe edge merges two of these components into one.
 Each component is a tree.
 Since an MST has exactly |V|−1 edges, the for loop

iterates |V|−1 times.
 Equivalently, after adding |V|−1 safe edges, we’re down to just

one component.

Properties of GENERIC-MST

11

Corollary 23.2

12

 Corollary 23.2
If C = (VC, EC) is a connected component in the forest
GA = (V, A) and (u, v) is a light edge connecting C to some
other component in GA, then (u,v) is safe for A.

 Proof:
 The cut (VC, V − VC) respects A, and (u, v) is a light edge for this

cut.
 Therefore, (u,v) is safe for A.

Outline
 Growing a minimum spanning tree
 The algorithms of Kruskal and Prim

13

Kruskal’s algorithm1/2

14

 G = (V, E) is a connected, undirected, weighted graph.
w : E → R.

 Starts with each vertex being its own component.
 Repeatedly merges two components into one by choosing the

light edge that connects them.
 Scans the set of edges in monotonically increasing order by

weight.
 Uses a disjoint-set data structure to determine whether an

edge connects vertices in different components.

Kruskal’s algorithm2/2

15

 In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph.

 The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components.

MST-KRUSKAL(G, w)
1. A ← Ø
2. for each vertex v∈V[G]
3. MAKE-SET(v)
4. sort the edges of E into nondecreasing order by weight w
5. for each edge (u, v)∈E, taken in nondecreasing order by weight
6. if FIND-SET(u) ≠ FIND-SET(v)
7. A ← A∪ {(u, v)}
8. UNION(u, v)
9. return A

Analysis
 Time complexity
 Initialize A: O(1)
 First for loop: n MAKE-SETs
 Sort E: O(m lgm)
 Second for loop: O(m) FIND-SETs and UNIONs

 Using the disjoint-set data structure in Chapter 21.
 Time complexity: O((n+m) α(n)) + O(m lgm)
 Since G is connected, m ≥ n − 1 ⇒ O(mα(n)) + O(m lgm)
 α(n) = O(lgn) = O(lgm).
 Therefore, total time is O(m lgm).
 m ≤ n2 ⇒ lgm = O(2lgn) = O(lgn).
 Therefore, O(m lgn) time.

18

Prim’s algorithm1/2

19

 G = (V, E) is a connected, undirected, weighted graph.
 Builds one tree, so A is always a tree.
 Starts from an arbitrary “root”.
 At each step, find a light edge crossing cut (VA, V − VA),

where VA = vertices that A is incident on.
 Add this edge to A.

Prim’s algorithm2/2

20

 In Prim's algorithm, the set A forms a single tree.
 The safe edge added to A is always a least-weight edge

connecting the tree to a vertex not in the tree.

MST-PRIM(G, w, r)
1. for each u∈V[G]
2. key[u] ← ∞
3. π[u] ← NIL
4. key[r] ← 0
5. Q ← V [G]
6. while Q ≠ Ø
7. u ← EXTRACT-MIN(Q)
8. for each v ∈Adj[u]
9. if v∈Q and w(u, v) < key[v]
10. π[v] ← u
11. key[v] ← w(u, v)

10
28

14 16

25
24

18
12

22

10

∞

25 ∞

∞∞
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

28

25 ∞

∞∞
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

28

0 22

∞24
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

0

0 0

014
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

16

0 0

018
0w

x

y

z

p
q

r

10
28

14 16

25
24

18
12

22

0

28

0 0

1218
0w

x

y

z

p
q

r

Analysis
 Time complexity depends on how the priority queue is

implemented.
 Suppose Q is a binary heap.
 Initialize Q and first for loop: O(n)
 while loop: n EXTRACT-MIN calls ⇒ O(n lgn)
 ≤ mDECREASE-KEY calls ⇒ O(m lgn)
 Total: O(m lgn)

 Suppose Q is a Fibonacci heap.
 Initialize Q and first for loop: O(n)
 while loop: n EXTRACT-MIN calls ⇒ O(n lgn)
 ≤ mDECREASE-KEY calls ⇒ O(m)
 Total: O(m +n lgn)

24

(amortized)

(worst case)

