Algorithms

Chapter 22
Elementary Graph Algorithms

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Representations of graphs BB % 5 :t
» Breadth-first search B %
» Depth-first search ™ ** ##3 B85t o

» Topological sort szs4e5 B £ 44 ni &

» Strongly connected components

Konigsberg Bridge Problem ‘#:zra%k 22, w3 a2

» Can we walk across all the bridges exactly once in returning
back to the starting land area ?
ErERARTABG -RE-REMDHBRS

» Transferring to Graph model
» Land — vertex
» Bridge — edge

Graph representation

» GivenagraphG=(V,E).@:-8m@.&RmE
» May be either directed or undirected.

» Two standard ways to represent a graph:

Adjacency lists, when the graph is sparse. tz:1, Lst > DY

ix > D2
Adjacency matrix, when the graph is dense. moTHX > D%

» When expressing the running time of an algorithm, it’s often in
terms of both|V| and |E|, where |V| =nand |E| = m.

» Example: O(n+m). @%m@ivizn Fo B1:m £ z05PR4R 56 R

» Example: For an undirected graph: & @
Adj
0) L[2] 5]/
2 >] > 5 > 4 > 3 | A
(2) JEREN
(53 (3) NES I ENEESE
s a1] P 2]/
» Example: For a directed graph: @@

Adj

B W N =
Y v
£l =] &2
e
¥
)
™

Y Y

» Array Adj of n lists, one per vertex.

» Vertex u’s list has all vertices v such that (u, v)eE.

» If edges have weights, can put the weights in the lists.
» Weight: w: E— R. 1448 weight 31 & Listh

» Space: ©O(n + m).

» Time:

» list all vertices adjacent to u: O(deg(u)). 51w Br BBy XpE O (degw))
» determine if (u, v)e E: ©(deg(u)). %o & 2 % 40 58 O (deg(w)

» Example: For an undirected graph: &&@
1 23 4 5
© 7 1o 1 0 0 1
201 0 1 1 1
T i
o () 4lo 1 1 0 1
s[1 101 0

» Example: For a directed graph: @@

= W o=
o = O O

» Ais an n x n matrix such that

3 _{1 if(i,)e E, a3 2x M weight
J

0 otherwise.

» Can store weights instead of bits for weighted graph.
» Space: O(n?).

» Time:
» list all vertices adjacent to u: ©(n). % % Er& By ZBE O
» determine if (u, v)e E: ©(1). Job 2%+ % 00)

IR BESXNED L 51520

Outline

Representations of graphs
Breadth-first search

>
>
» Depth-first search
» Topological sort

>

Strongly connected components

Breadth-first search B-feusd

\X
» Input: A graph G = (V, E) and a distinguished source vertex s.
» G can either be directed or undirected. B #®B %)

» Output: The distance (smallest number of edges) from s to each
reachable vertex. 5] § & § s B2 86 &k F0 "breod+h - first tvee”

» As a by-product, it computes a "breadth-first tree" with
root s that contains all reachable vertices.

RIFAAE BRI HAcRIEPR Y 3IRMLY BB R
» ldea: Discover all vertices at distance k from s before
discovering any vertices at distance k + 1.

» First hits all vertices 1 edge from s.
» From there, hits all vertices 2 edges from s.
» And so on.

u

71

0
O

{

i

171

S 7

r

v

(b)

(a)

."

X

w

-\ I‘

X

‘.b.‘

u

441

t

(d)

(c)

..\.

X

w

U

[2 =€)
A7

i

/1

viiu|y

Q

()

|

]A.!

u

3

2

u

u

w

"1"

i

B : finished

[_1: undiscovered

(1)

discovered

w

Pseudocode

BFS(G, s)

1. for each vertex u € V [G] — {s}

2. color[u] <~ WHITE J ANHS 1L S LROY g

3. d[u] < e

4. TT[u] < NIL

5. color[s] < GRAY _

6. dls] <0 antsie S

7. TI[s] « NIL

8. Q«0@

9. ENQUEUE(Q, S) -

10. whileQz@

11. u < DequUEUE(Q)]

12. for each v € Adju] O4tQdEE -5 u

ﬁ. if coé(o);([)\;]fWHlTE ® 135 wikh i@ IE it By Xp B
- VI & GRAY A TELLT:

15. dlv] < d[u] +1) ;ggﬁn,ég'i‘w%ﬁg«?.

16. TT[v] <« u G g~ QB

17. ENQUEUE (Q, V) O U udam 23

18. color[u] < BLACK]

Complexity

» The algorithm uses a first-in, first-out queue Q to manage the
set of gray vertices. {PRa:=%f % %

» TT[v]: the predecessor of v. (mE 2Epoig1t])

» Breadth-first tree : G, = (V_, E;)
» V.= {ve V:Tr[v] #NIL} U{s} 243
» E_= {(mT[v],v):ve V_—{s}} &S

» The path in breadth-first tree from s to v is a shortest path

(containing the fewest number of edges) from sto v.
“breadth- first tvee EBY 224% B B 2 Tn #LUS R S BYEs FR 2B 4%
» Time: O(n+m).
» O(n): every vertex enqueued at most once. & -18 % & % #2 3 » gueue b - =2
» O(m): using adjacency list, each edge is scanned at most
twice. @M adjacency List, @ - D RB/IME 20

Outline

» Representations of graphs

» Breadth-first search

» Depth-first search

» Topological sort

» Strongly connected components

w ILIZ AR EPR R TRIBT _ i@ %82

Depth-firstsearch sz

» Input: A graph G = (V, E). No source vertex is given!
» G can either be directed or undirected.

» Output: Two timestamps: d[v] = discovery time and % - =z 1 & 85 A3l

flv] = finishing time.
S 05 P8, DA PR A RBE BT

p It also computes a depth-first forest G = (V, E_), where
~=1{(1[v],v):ve V and TT[v] # NIL}L> B4

» Will methodically explore every edge. 4. i i+ =5 83 edge
» Start over from different vertices as necessary.

» As soon as we discover a vertex, explore from it.

» Unlike BFS, which puts a vertex on a queue so that we
explore from it later. & 3133 &8 R ey 202, B 333 F - 10 20R

[_]: undiscovered : discovered Il : finished

DFS(G)

1. for each vertex u e V[G] 1

2. color[u] < WHITE anugie, e Fhe. xR e

3. TT[v] < NIL)

4. time < 0O

5. foreachvertexue V[G] -)

6. if color[u] = WHITE 21 8-1031R 5. wR 2B FHBAM vunoFs
7. DFS-VisiT(u))

DFS-VisiT(u)

1. color[u] < GRAY % White vertex u has just been discovered.
2. time « time + 1 uid % 10 % T Ehe. 05 5

3. d[u] « time -

4. for each v e Adju] % Explore edge(u, v).

5. if color[v] = WHITE .

7. DFS-VisiT(v)

8. color[u] < BLACK % Blacken u; it is finished.

9. flu] « time < time +1

» TT[v] : the predecessor of v.

» Discovery and finish times:
» Unique integers from 1 to 2n.
» Forallv, d[v] < f[v].
» In other words, 1 < d[v] < f[v] < 2n.

» Time: ©(n+m).
» O(n): The procedure DFS-VisiT is called exactly once for
each vertex ve V[G]. §-1@ & @t %@ OFs-vISITofoy - =

» O(m): Using adjacency list, each edge is scann_ed at most
twice. ‘@M adjacency Lst, @ - 1O DR IS 2 R

» Another important property of depth-first search is that
discovery and finishing times have parenthesis structure.3z 2 & &

» When vertex u is discovered =» represent u with “(u”. ‘ A x
» When vertex u is finished = represent u with “u)”. 3 3%

1 23 4 5 6 7 8 9 10111213 14 1516
(s @O &y wwz s v @i

» Theorem 22.7 (Parenthesis theorem)

For any two vertices u and v, exactly one of the following
three conditions holds:

» the intervals [d[u], flu]] and [d]V], flv]] are entirely disjoint, and
neither u nor v is a descendant of the other in the depth-first
forest,

» the interval [d[u], flu]] is contained entirely within the interval
[d[v], flv]], and u is a descendant of v in a depth-first tree, or

» the interval [d]v], flv]] is contained entirely within the interval

[d[u], flu]l, and v is a descendant of u in a depth-first tree.
V)
QuvihhE: Y OvRub3d: v

@ul2vBrIik: |——\\:_l

» Corollary 22.8 (Nesting of Descendants' Intervals)
Vertex v is a proper descendant of vertex u in the depth-first
forest for a graph G if and only if d[u] < d[v] < f[v] < flu].

f—

» Theorem 22.9 (White-path theorem)
Vertex v is a descendant of vertex u if and only if at the time d[u],
there is a u-v path consisting of only white vertices.

vEuBI3¥% QR uE - R IRIIBOE B -1F u-v path,
path EBYS B 2 B BY

Classification of edges

» Four edge types:
» Tree edge: in the depth-first forest G_..

» Back edge: non-tree edge (u, v) such that u is a descendant of v.
(including self-loop)

» Forward edge: non-tree edge (u, v) such that u is an ancestor of v.

» Cross edge: non-tree edge (u, v) such that u is neither a descendant
nor an ancestor of v.

& b 1% 2% OFS % & ¥R edge

Modify DFS algorithm to classify edges

» Idea : Each edge (u, v) can be classified by the color of the
vertex v that is reached when the edge is first explored.

» White: tree edge.
» Gray: back edge.
» Black: forward edge if d[u] < d[v] and cross edge if d[u] > d[v].
forward: utt v 2 R FIS5, cross: wtt v 0% %R 31 85
» If Gis an undirected graph, an edge is classified as the first
type that applies. 4o 2 2@ B, edge 69 F 1t b 3 - =2 HIR = 3y
(uv): wEiisv -0, Vi 315 u - =R

Theorem 22.10 &g @ 24 tvee edge 3o back edge

» Theorem 22.10 : In a depth-first search of an undirected
graph G, every edge of G is either a tree edge or a back edge.

» Proof:
» Suppose (u, v) is an edge in G with d[u] < d[v]. , &5 v @ # 31 35

» Since vis on u's adjacency list, v must be discovered and finished
before we finishu. BuPMIEFE5a, v-2 LR FIIDBUR TN FEHR

» If (u, v) is explored first from u to v, then (u, v) is a tree edge.

» Otherwise, (u, v) is a back edge, since u is still gray at the time the

edge is first explored. ® uw¥$t i35 v 2 tree edge
®© viIis v P back edge

Outline

» Representations of graphs

» Breadth-first search

» Depth-first search

» Topological sort

» Strongly connected components

Topological sort szstus ces 28 wentHB

» Use depth-first search to perform a topological sort of a
directed acyclic graph (dag).

» A topological sort of a dag G is a linear ordering of all its
vertices such that if G contains an edge (u, v), then u appears

before vin the ordering. usv3ufvizay

11/16 (undershorts (socks) 17/18
Y Y -
12/15 (pants >{ shoes) 13/14

= “
(socks) (undershorts pants @i@ @ jacket

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Pseudocode

TopPOLOGICAL-SORT(G)

1. call DFS(G) to compute finishing times f[v] for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices 43 @ orFs, 42 D% F1355 B2 AL X List P

» Time: ©(n+m).
» Depth-first search takes ®(n+m) time.
» It takes O(1) time to insert each of the n vertices.

» Correctness: Refer to textbook.

Outline

» Representations of graphs

» Breadth-first search

» Depth-first search

» Topological sort

» Strongly connected components

3&3@@1 WIMEIv, vud §u HELIR
Strongly connected components

» A strongly connected component of a directed graph G = (V, E)
is @ maximal set of vertices Ce V such that for every pair of
vertices u and vin C, we have both u-v path and v-u path.

» The transpose of a directed graph G = (V, E) is the graph
G'=(V, E"), where ET={(u,v) : (v,u)e E}. 6™ 43 GP BredgeR ™

» ET consists of the edges of G with their directions reversed.

» Observe that G and G" have exactly the same strongly connected
components. G#0 G’ Eys8 258xMR

Pseudocode

STRONGLY-CONNECTED-COMPONENTS(G)
1. call DFS(G) to compute finishing times f[u] for each vertex u
2. compute G'

3. call DFS(G"), but in the main loop of DFS, consider the vertices
in order of decreasing f[u] (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in
line 3 as a separate strongly connected component

ORDFS BRI @B G
G D4 DK BISE G L % 80 OFS
@ output 43 ¥ By forest

¥

Complexity

» Time: ©(n+m).

» Two depth-first searches take ®(n+m) time.

» Correctness: Refer to textbook.

» For an undirected graph G, performing DFS once can obtain all
“connected components”.

» See data structures chapter 6 for more information.

