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Konigsberg Bridge Problem
 Can we walk across all the bridges exactly once in returning 

back to the starting land area ?

 Transferring to Graph model
 Land → vertex  
 Bridge → edge
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Graph representation
 Given a graph G = (V, E).
 May be either directed or undirected.
 Two standard ways to represent a graph:

 Adjacency lists, when the graph is sparse.
 Adjacency matrix, when the graph is dense.

 When expressing the running time of an algorithm, it’s often in 
terms of both|V| and |E|, where |V| = n and |E| = m.
 Example: O(n+m). 
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 Example: For an undirected graph:

 Example: For a directed graph:

Adjacency lists1/2
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 Array Adj of n lists, one per vertex.
 Vertex u’s list has all vertices v such that (u, v)∈E.
 If edges have weights, can put the weights in the lists.
 Weight: w : E → R.

 Space: Θ(n + m). 
 Time: 
 list all vertices adjacent to u: Θ(deg(u)). 
 determine if (u, v)∈E: Θ(deg(u)).

Adjacency lists2/2
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 Example: For an undirected graph:

 Example: For a directed graph:

Adjacency matrix1/2
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 A is an n x n matrix such that

 Can store weights instead of bits for weighted graph.
 Space: Θ(n2). 
 Time: 
 list all vertices adjacent to u: Θ(n). 
 determine if (u, v)∈E: Θ(1).

Adjacency matrix2/2
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Breadth-first search
 Input: A graph G = (V, E) and a distinguished source vertex s.

 G can either be directed or undirected.

 Output: The distance (smallest number of edges) from s to each
reachable vertex. 

 As a by-product, it computes a "breadth-first tree" with 
root s that contains all reachable vertices.

 Idea: Discover all vertices at distance k from s before 
discovering any vertices at distance k + 1.
 First hits all vertices 1 edge from s.
 From there, hits all vertices 2 edges from s.
 And so on.
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: undiscovered

: discovered

: finished



Pseudocode
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BFS(G, s)
1. for each vertex u ∈ V [G] − {s} 
2. color[u] ← WHITE
3. d[u] ← ∞
4. π[u] ← NIL
5. color[s] ← GRAY
6. d[s] ← 0
7. π[s] ← NIL
8. Q ← Ø
9. ENQUEUE(Q, s)
10. while Q ≠ Ø
11. u ← DEQUEUE(Q)
12. for each v ∈ Adj[u]
13. if color[v] = WHITE
14. color[v] ← GRAY
15. d[v] ← d[u] + 1
16. π[v] ← u
17. ENQUEUE (Q, v)
18. color[u] ← BLACK



Complexity
 The algorithm uses a first-in, first-out queue Q to manage the 

set of gray vertices.
 π[v] : the predecessor of v.
 Breadth-first tree : Gπ = (Vπ, Eπ)
 Vπ =   {v ∈ V: π[v] ≠ NIL} ∪{s}
 Eπ =   {(π[v], v) : v ∈ Vπ − {s}}

 The path in breadth-first tree from s to v is a shortest path 
(containing the fewest number of edges) from s to v.

 Time: O(n +m).
 O(n): every vertex enqueued at most once.
 O(m): using adjacency list, each edge is scanned at most 

twice.
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Depth-first search
 Input: A graph G = (V, E). No source vertex is given!

 G can either be directed or undirected.

 Output: Two timestamps: d[v] = discovery time and  
f[v] = finishing time.

 It also computes a depth-first forest Gπ = (V, Eπ), where 
Eπ= {(π[v], v) : v ∈ V and π[v] ≠ NIL}.

 Will methodically explore every edge.
 Start over from different vertices as necessary.

 As soon as we discover a vertex, explore from it.
 Unlike BFS, which puts a vertex on a queue so that we

explore from it later.
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: undiscovered : discovered : finished



DEPTH-FIRST SEARCH pseudocode1/2
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DFS(G)
1. for each vertex u ∈ V [G]
2. color[u] ← WHITE
3. π[v] ← NIL
4. time ← 0
5. for each vertex u ∈ V [G]
6. if color[u] = WHITE
7. DFS-VISIT(u)

DFS-VISIT(u)
1. color[u] ← GRAY             % White vertex u has just been discovered.
2. time ← time + 1
3. d[u]  ← time
4. for each v ∈ Adj[u]         % Explore edge(u, v). 
5. if color[v] = WHITE
6. π[v] ← u
7. DFS-VISIT(v)
8. color[u] ← BLACK           % Blacken u; it is finished.
9. f [u] ← time ← time +1



DEPTH-FIRST SEARCH pseudocode2/2
 π[v] : the predecessor of v.

 Discovery and finish times:
 Unique integers from 1 to 2n.
 For all v, d[v] < f[v].
 In other words, 1 ≤ d[v] < f[v] ≤ 2n.

 Time: Θ(n +m).
 Θ(n): The procedure DFS-VISIT is called exactly once for 

each vertex v∈V[G].
 Θ(m): Using adjacency list, each edge is scanned at most 

twice.
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 Another important property of depth-first search is that 
discovery and finishing times have parenthesis structure.
 When vertex u is discovered  represent u with “(u”.
 When vertex u is finished  represent u with “u)”.

Properties of depth-first search1/3
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 Theorem 22.7 (Parenthesis theorem)  
For any two vertices u and v, exactly one of the following 
three conditions holds:
 the intervals [d[u], f[u]] and [d[v], f[v]] are entirely disjoint, and 

neither u nor v is a descendant of the other in the depth-first 
forest,

 the interval [d[u], f[u]] is contained entirely within the interval 
[d[v], f[v]], and u is a descendant of v in a depth-first tree, or

 the interval [d[v], f[v]] is contained entirely within the interval 
[d[u], f[u]], and v is a descendant of u in a depth-first tree.

Properties of depth-first search2/3
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 Corollary 22.8 (Nesting of Descendants' Intervals)  
Vertex v is a proper descendant of vertex u in the depth-first 
forest for a graph G if and only if d[u] < d[v] < f[v] < f[u].

 Theorem 22.9 (White-path theorem)
Vertex v is a descendant of vertex u if and only if at the time d[u], 
there is a u-v path consisting of only white vertices.

Properties of depth-first search3/3
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 Four edge types:
 Tree edge: in the depth-first forest Gπ.
 Back edge: non-tree edge (u, v) such that u is a descendant of v.

(including self-loop)
 Forward edge: non-tree edge (u, v) such that u is an ancestor of v.
 Cross edge: non-tree edge (u, v) such that u is neither a descendant 

nor an ancestor of v.

Classification of edges
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 Idea : Each edge (u, v) can be classified by the color of the 
vertex v that is reached when the edge is first explored.
 White: tree edge.
 Gray: back edge.
 Black: forward edge if d[u] < d[v] and cross edge if d[u] > d[v]. 

 If G is an undirected graph, an edge is classified as the first
type that applies.

Modify DFS algorithm to classify edges
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 Theorem 22.10 : In a depth-first search of an undirected 
graph G, every edge of G is either a tree edge or a back edge.

 Proof:
 Suppose (u, v) is an edge in G with d[u] < d[v].
 Since v is on u's adjacency list, v must be discovered and finished 

before we finish u.
 If (u, v) is explored first from u to v, then (u, v) is a tree edge.
 Otherwise, (u, v) is a back edge, since u is still gray at the time the 

edge is first explored. 

Theorem 22.10
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 Use depth-first search to perform a topological sort of a 
directed acyclic graph (dag).

 A topological sort of a dag G is a linear ordering of all its 
vertices such that if G contains an edge (u, v), then u appears 
before v in the ordering.

Topological sort
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Pseudocode
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TOPOLOGICAL-SORT(G)
1. call DFS(G) to compute finishing times f[v] for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

 Time: Θ(n +m).
 Depth-first search takes Θ(n+m) time.
 It takes O(1) time to insert each of the n vertices.

 Correctness: Refer to textbook.
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 A strongly connected component of a directed graph G = (V, E) 
is a maximal set of vertices C∈V such that for every pair of 
vertices u and v in C, we have both u-v path and v-u path.

 The transpose of a directed graph G = (V, E) is the graph 
GT = (V, ET), where ET = {(u,v) : (v,u)∈E}.
 ET consists of the edges of G with their directions reversed.

 Observe that G and GT have exactly the same strongly connected 
components.

Strongly connected components
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Pseudocode
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STRONGLY-CONNECTED-COMPONENTS(G)
1. call DFS(G) to compute finishing times f[u] for each vertex u
2. compute GT

3. call DFS(GT), but in the main loop of DFS, consider the vertices
in order of decreasing f[u] (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in
line 3 as a separate strongly connected component

G



Complexity
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 Time: Θ(n +m).
 Two depth-first searches take Θ(n+m) time.

 Correctness: Refer to textbook.

 For an undirected graph G, performing DFS once can obtain all 
“connected components”. 
 See data structures chapter 6 for more information.


