
AlgorithmsChapter 22Elementary Graph Algorithms
Associate Professor: Ching-Chi Lin

林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Representations of graphs
 Breadth-first search
 Depth-first search
 Topological sort
 Strongly connected components

2

Konigsberg Bridge Problem
 Can we walk across all the bridges exactly once in returning

back to the starting land area ?

 Transferring to Graph model
 Land → vertex
 Bridge → edge

3

A A
A

B B
B

C C

C

D
D

D

Graph representation
 Given a graph G = (V, E).
 May be either directed or undirected.
 Two standard ways to represent a graph:

 Adjacency lists, when the graph is sparse.
 Adjacency matrix, when the graph is dense.

 When expressing the running time of an algorithm, it’s often in
terms of both|V| and |E|, where |V| = n and |E| = m.
 Example: O(n+m).

4

 Example: For an undirected graph:

 Example: For a directed graph:

Adjacency lists1/2

5

 Array Adj of n lists, one per vertex.
 Vertex u’s list has all vertices v such that (u, v)∈E.
 If edges have weights, can put the weights in the lists.
 Weight: w : E → R.

 Space: Θ(n + m).
 Time:
 list all vertices adjacent to u: Θ(deg(u)).
 determine if (u, v)∈E: Θ(deg(u)).

Adjacency lists2/2

6

 Example: For an undirected graph:

 Example: For a directed graph:

Adjacency matrix1/2

7

 A is an n x n matrix such that

 Can store weights instead of bits for weighted graph.
 Space: Θ(n2).
 Time:
 list all vertices adjacent to u: Θ(n).
 determine if (u, v)∈E: Θ(1).

Adjacency matrix2/2

8



 ∈

=
otherwise.0

,),(if1 Eji
aij

Outline
 Representations of graphs
 Breadth-first search
 Depth-first search
 Topological sort
 Strongly connected components

9

Breadth-first search
 Input: A graph G = (V, E) and a distinguished source vertex s.

 G can either be directed or undirected.

 Output: The distance (smallest number of edges) from s to each
reachable vertex.

 As a by-product, it computes a "breadth-first tree" with
root s that contains all reachable vertices.

 Idea: Discover all vertices at distance k from s before
discovering any vertices at distance k + 1.
 First hits all vertices 1 edge from s.
 From there, hits all vertices 2 edges from s.
 And so on.

10

: undiscovered

: discovered

: finished

Pseudocode

12

BFS(G, s)
1. for each vertex u ∈ V [G] − {s}
2. color[u] ← WHITE
3. d[u] ← ∞
4. π[u] ← NIL
5. color[s] ← GRAY
6. d[s] ← 0
7. π[s] ← NIL
8. Q ← Ø
9. ENQUEUE(Q, s)
10. while Q ≠ Ø
11. u ← DEQUEUE(Q)
12. for each v ∈ Adj[u]
13. if color[v] = WHITE
14. color[v] ← GRAY
15. d[v] ← d[u] + 1
16. π[v] ← u
17. ENQUEUE (Q, v)
18. color[u] ← BLACK

Complexity
 The algorithm uses a first-in, first-out queue Q to manage the

set of gray vertices.
 π[v] : the predecessor of v.
 Breadth-first tree : Gπ = (Vπ, Eπ)
 Vπ = {v ∈ V: π[v] ≠ NIL} ∪{s}
 Eπ = {(π[v], v) : v ∈ Vπ − {s}}

 The path in breadth-first tree from s to v is a shortest path
(containing the fewest number of edges) from s to v.

 Time: O(n +m).
 O(n): every vertex enqueued at most once.
 O(m): using adjacency list, each edge is scanned at most

twice.
13

Outline
 Representations of graphs
 Breadth-first search
 Depth-first search
 Topological sort
 Strongly connected components

14

Depth-first search
 Input: A graph G = (V, E). No source vertex is given!

 G can either be directed or undirected.

 Output: Two timestamps: d[v] = discovery time and
f[v] = finishing time.

 It also computes a depth-first forest Gπ = (V, Eπ), where
Eπ= {(π[v], v) : v ∈ V and π[v] ≠ NIL}.

 Will methodically explore every edge.
 Start over from different vertices as necessary.

 As soon as we discover a vertex, explore from it.
 Unlike BFS, which puts a vertex on a queue so that we

explore from it later.
15

: undiscovered : discovered : finished

DEPTH-FIRST SEARCH pseudocode1/2

17

DFS(G)
1. for each vertex u ∈ V [G]
2. color[u] ← WHITE
3. π[v] ← NIL
4. time ← 0
5. for each vertex u ∈ V [G]
6. if color[u] = WHITE
7. DFS-VISIT(u)

DFS-VISIT(u)
1. color[u] ← GRAY % White vertex u has just been discovered.
2. time ← time + 1
3. d[u] ← time
4. for each v ∈ Adj[u] % Explore edge(u, v).
5. if color[v] = WHITE
6. π[v] ← u
7. DFS-VISIT(v)
8. color[u] ← BLACK % Blacken u; it is finished.
9. f [u] ← time ← time +1

DEPTH-FIRST SEARCH pseudocode2/2
 π[v] : the predecessor of v.

 Discovery and finish times:
 Unique integers from 1 to 2n.
 For all v, d[v] < f[v].
 In other words, 1 ≤ d[v] < f[v] ≤ 2n.

 Time: Θ(n +m).
 Θ(n): The procedure DFS-VISIT is called exactly once for

each vertex v∈V[G].
 Θ(m): Using adjacency list, each edge is scanned at most

twice.

18

 Another important property of depth-first search is that
discovery and finishing times have parenthesis structure.
 When vertex u is discovered  represent u with “(u”.
 When vertex u is finished  represent u with “u)”.

Properties of depth-first search1/3

19

 Theorem 22.7 (Parenthesis theorem)
For any two vertices u and v, exactly one of the following
three conditions holds:
 the intervals [d[u], f[u]] and [d[v], f[v]] are entirely disjoint, and

neither u nor v is a descendant of the other in the depth-first
forest,

 the interval [d[u], f[u]] is contained entirely within the interval
[d[v], f[v]], and u is a descendant of v in a depth-first tree, or

 the interval [d[v], f[v]] is contained entirely within the interval
[d[u], f[u]], and v is a descendant of u in a depth-first tree.

Properties of depth-first search2/3

20

 Corollary 22.8 (Nesting of Descendants' Intervals)
Vertex v is a proper descendant of vertex u in the depth-first
forest for a graph G if and only if d[u] < d[v] < f[v] < f[u].

 Theorem 22.9 (White-path theorem)
Vertex v is a descendant of vertex u if and only if at the time d[u],
there is a u-v path consisting of only white vertices.

Properties of depth-first search3/3

21

 Four edge types:
 Tree edge: in the depth-first forest Gπ.
 Back edge: non-tree edge (u, v) such that u is a descendant of v.

(including self-loop)
 Forward edge: non-tree edge (u, v) such that u is an ancestor of v.
 Cross edge: non-tree edge (u, v) such that u is neither a descendant

nor an ancestor of v.

Classification of edges

22

 Idea : Each edge (u, v) can be classified by the color of the
vertex v that is reached when the edge is first explored.
 White: tree edge.
 Gray: back edge.
 Black: forward edge if d[u] < d[v] and cross edge if d[u] > d[v].

 If G is an undirected graph, an edge is classified as the first
type that applies.

Modify DFS algorithm to classify edges

23

 Theorem 22.10 : In a depth-first search of an undirected
graph G, every edge of G is either a tree edge or a back edge.

 Proof:
 Suppose (u, v) is an edge in G with d[u] < d[v].
 Since v is on u's adjacency list, v must be discovered and finished

before we finish u.
 If (u, v) is explored first from u to v, then (u, v) is a tree edge.
 Otherwise, (u, v) is a back edge, since u is still gray at the time the

edge is first explored.

Theorem 22.10

24

Outline
 Representations of graphs
 Breadth-first search
 Depth-first search
 Topological sort
 Strongly connected components

25

 Use depth-first search to perform a topological sort of a
directed acyclic graph (dag).

 A topological sort of a dag G is a linear ordering of all its
vertices such that if G contains an edge (u, v), then u appears
before v in the ordering.

Topological sort

26

Pseudocode

27

TOPOLOGICAL-SORT(G)
1. call DFS(G) to compute finishing times f[v] for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

 Time: Θ(n +m).
 Depth-first search takes Θ(n+m) time.
 It takes O(1) time to insert each of the n vertices.

 Correctness: Refer to textbook.

Outline
 Representations of graphs
 Breadth-first search
 Depth-first search
 Topological sort
 Strongly connected components

28

 A strongly connected component of a directed graph G = (V, E)
is a maximal set of vertices C∈V such that for every pair of
vertices u and v in C, we have both u-v path and v-u path.

 The transpose of a directed graph G = (V, E) is the graph
GT = (V, ET), where ET = {(u,v) : (v,u)∈E}.
 ET consists of the edges of G with their directions reversed.

 Observe that G and GT have exactly the same strongly connected
components.

Strongly connected components

29

G GT

Pseudocode

30

STRONGLY-CONNECTED-COMPONENTS(G)
1. call DFS(G) to compute finishing times f[u] for each vertex u
2. compute GT

3. call DFS(GT), but in the main loop of DFS, consider the vertices
in order of decreasing f[u] (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in
line 3 as a separate strongly connected component

G

Complexity

31

 Time: Θ(n +m).
 Two depth-first searches take Θ(n+m) time.

 Correctness: Refer to textbook.

 For an undirected graph G, performing DFS once can obtain all
“connected components”.
 See data structures chapter 6 for more information.

