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Overview
 Disjoint-set data structures 
 Also known as “union find.”

 Maintain a collection S = {S1, S2,…, Sk} of disjoint dynamic sets.

 Each set is identified by a representative, which is some member of 
the set.

 Doesn’t matter which member is the representative, as long as if 
we ask for the representative twice without modifying the set, we 
get the same answer both times.
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Operations
 Disjoint-set data structures support the following three 

operations.
 MAKE-SET(x): create a new set Si = {x}, and add Si to S.

 UNION(x, y): unite the dynamic sets that contain x and y, say Sx and 
Sy, into a new set. 
 if x∈Sx, y∈Sy, then S←S−Sx−Sy∪{Sx∪Sy}.

 The representative of the resulting set is any member of Sx∪Sy .

 Since we require the sets in the collection to be disjoint, we "destroy" 
sets Sx and Sy .

 FIND-SET(x): return the representative of the set containing x.
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Analyzing the running times
 Two parameters:
 n = number of elements = number of MAKE-SET operations.
 m = total number of MAKE-SET, UNION, and FIND-SET operations.

 Analysis:
 m ≥ n.
 Have at most n − 1 UNION operations.
 Assume that the first n operations are MAKE-SET.
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An application
 Determining the connected components
 For a graph G = (V, E), vertices u, v are in same connected 

component if and only if there's a path between them.

 Connected components partition vertices into equivalence classes.
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CONNECTED-COMPONENTS(G)
1. for each vertex v∈V[G]
2. MAKE-SET(v)
3. for each edge (u, v)∈E[G]
4. if FIND-SET(u) ≠ FIND-SET(v)
5. UNION(u, v)

SAME-COMPONENT(u, v)
1. if FIND-SET(u) = FIND-SET(v)
2. return TRUE
3. else return FALSE
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Linked list representation
 The first object in each linked list serves as its set's 

representative.
 Each object in the linked list contains
 a set member, 
 a pointer to the next set member, and 
 a pointer back to the representative.

 Each list maintains pointers head, to the representative, and tail, 
to the last object in the list.
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Figure 21.2 (a) Linked-list representations of two
sets. (b) The result of UNION(g, e).



Operations
 MAKE-SET(x): create a new linked list whose only object is x.
 O(1) time.

 FIND-SET(x):return the pointer from x back to the representative.
 O(1) time.

 UNION(x, y): append y's list onto the end of x's list. 
 Use x’s tail pointer to find the end.
 Need to update the representative for each object on y's list.
 Take time linear in the length of y's list.
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Worst case for implementation of the union
 Suppose that we have objects x1, x2,..., xn and execute the 

following sequence of operations.

 The running time for the 2n − 1 operaƟons is Θ(n2).
 The amortized time of an operation is Θ(n).
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A weighted-union heuristic1/2
 Append the smaller list onto the longer.
 With this simple weighted-union heuristic, a single union can 

still take Ω(n) time, e.g., if both sets have n/2 members.
 Theorem 21.1 Using the weighted-union heuristic, a sequence

of m MAKE-SET, UNION, and FIND-SET operations, 
n of which are MAKE-SET operations, takes 
O(m+n lgn) time.

Proof:
 Each MAKE-SET and FIND-SET still takes O(1), and there are O(m) of 

them.
 How many times can each object’s representative pointer be 

updated?
 It must be in the smaller set each time.
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A weighted-union heuristic2/2

 The first time x's representative pointer was updated, the 
resulting set must have had at least 2 members.

 Therefore, each representative is updated ≤lgn times.
 The total time used in updating pointers over all UNION

operations is thus O(n lgn).
 The total time for the entire sequence is thus O(m+n lgn).
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Disjoint-set forest
 In a disjoint-set forest: 
 Each tree represents one set;
 Each member points only to its parent;
 The root contains the representative; and
 The root is its own parent.
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Operations
 MAKE-SET(x): creates a tree with just one node.
 O(1) time.

 FIND-SET(x): follow parent pointers until we find the root.
 O(h) time.
 The nodes visited on this path toward the root constitute the find 

path.

 UNION(x, y): causes the root of one tree to point to the root of 
the other. 
 O(h) time.

 Problem: A sequence of n − 1 UNION operations may create a 
tree that is just a linear chain of n nodes.
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Heuristics to improve the running time
 By using two heuristics, however, we can achieve a running time 

that is almost linear in the total number of operations m.

 Union by rank: make the root of the tree with fewer nodes  a 
child of the root of tree with more nodes.
 Don’t actually use size.
 Use rank, which is an upper bound on height of node.
 Make the root with the smaller rank into a child of the root with the 

larger rank.

 Path compression: make all nodes on the find path direct 
children of root.
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 Triangles represent subtrees whose roots are the nodes shown.

 In Figure b, each node on the find path now points directly to 
the root after executing FIND-SET(a).

Path compression
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FIND-SET(a)



Pseudocode for disjoint-set forest

 The FIND-SET procedure is a two-pass method:
 it makes one pass up the find path to find the root; and
 a second pass back down the find path to update each node to 

point directly to root.
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FIND-SET(x)
1. if x ≠ p[x]
2. p[x] ← FIND-SET(p[x]) 
3. return p[x]

MAKE-SET(x)
1. p[x] ← x
2. rank[x] ← 0

UNION(x, y)
1. LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)
1. if rank[x] > rank[y]
2. p[y] ← x
3. else p[x] ← y
4. if rank[x] = rank[y]
5. rank[y] ← rank[y] + 1



Effect of the heuristics on the running time1/2
 Union by rank yields a running time of O(m lgn).

 Path-compression gives a worst-case running time 
Θ(n+ f ⋅ (1 +log2+ f/nn)).

 n = number of MAKE-SET operations.
 f  = number of FIND-SET operations.
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Effect of the heuristics on the running time2/2
 When we use both union by rank and path compression, the 

worst-case running time is O(mα(n)), where α(n) is a very slowly 
growing function.

 In any conceivable application, α(n) ≤ 4.
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