Algorithms

Chapter 21
DS for Disjoint Sets

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Disjoint-set operations 443 & & disjoint set

» Linked list representation of disjoint sets o s @ linked list % @ 1E
» Disjoint-set forests Bdisjoint forest set % ¥ 4%

» Analysis of union by rank with path compression

OvVerview s:famo.cy, fe3, §£.9%3

» Disjoint-set data structures
» Also known as “union find.” 2 &% "union find", B ETE - BFEBIES
» Maintain a collection S ={S,, S,,..., S} of disjoint dynamic sets.

» Each set is identified by a representative, which is some member of
the set. R-PEsNE-BDHEE BESdH-BrE

» Doesn’t matter which member is the representative, as long as if
we ask for the representative twice without modifying the set, we
get the same answer both times.
ki3 +3% 2nRaisahlalimT,

KEBL 2T

Operations

» Disjoint-set data structures support the following three
operations. make - set (x): &4 - 1B RVE xB9'E 5,8 AT DISP
» MAKE-SET(x): create a new set S, = {x}, and add S; to S.

» UNION(x, y): unite the dynamic sets that contain x and y, say S, and
S,, INto @ new set. union (x,4): 43D 5 x BI% § Sx %o R2yeyEs ot

if x€S,, y€S,, then S¢<-5-5,-5 U{S,US}. S=S-Sx-Sy U FSxLSy?
The representative of the resulting set is any member of S,US, .

Since we require the sets in the collection to be disjoint, we "destroy"
sets S,and S, .

» FIND-SET(x): return the representative of the set containing x.
Snd-set () D18 x BREE BV E &

Analyzing the running times

» Two parameters:

» n=number of elements = number of MAKE-SET operations.
» m = total number of MAKE-SET, UNION, and FIND-SET operations.

n: i 5y @4 3D make - set Thik By=Rix"

» Analysis: .
Y m: moke-set , union, find- set Th1EBY 30 i

» m=n.
» Have at most n — 1 UNION operations. § %% n-1 18 union

» Assume that the first n operations are MAKE-SET.
AR2 3% & v 1B Th 1E B make - set

An application gmunion find" £ 4821 BRZ 2B

» Determining the connected components

» Foragraph G =(V, E), vertices u, v are in same connected

component if and only if there's a path between them.
wihovER-1® 2B L © uiov 2B H-IZparh
» Connected components partition vertices into equivalence classes.

CONNECTED-COMPONENTS(G)

1. for each vertex vE V[G] SAME-COMPONENT(u, V)

MAKE-SET(v) ; if FlNr[;-tSllE:r(luT)RzulgND-SET(v)
f hed EE[G :
or each edge [u, v) € £[G] 3. else return FALSE

if FIND-SET(u) # FIND-SET(V)
UNION(u, v)

vk wN

B union find" IR B E T2 i
wihorvER-1BD 2 ARE © uIov 2B H-1IEpath

0'0 (— @

Edge processed Collection of disjoint sets
initial sets {a} {0y A{c} {d} A{e} U gk ny iy 4}
(b,d) {a} {bd} {c} {e} Uy gy hy Gy U
(e.8) {a} {bd}y A{c} {egr thy iy U}
(a,c) {a,c} 1b.d} le.gr r thy iy Ub
(h.i) {a.c} {b.d} {e.gr i {h.i} U3
(a.b) {a.b.c.d} {egr {h.i} Ul
(e.f) {a.b.c.d} le./.8} h,i} Ul
(b,c) {a.b.c.d} {e.f.8} {h,i} Ul

Outline

» Disjoint-set operations
» Linked list representation of disjoint sets
» Disjoint-set forests 60455 @ linked list % R 1

» Analysis of union by rank with path compression

Linked list representation

» The first object in each linked list serves as its set's
representative. st b E-Bri 28 SbhniE

» Each object in the linked list contains :3Z §m@Afpas4d 155 E &
» aset member,
» a pointer to the next set member, and
» a pointer back to the representative.

» Each list maintains pointers head, to the representative, and tail,
to the last object in the list. & head ¥o tail & 18 3542

:auE
nn“}
iy iy Ny By
raHE A
(a)
a

G g 0 [g I g I g 0 e W e W

o

(b)

Figure 21.2 (a) Linked-list representations of two
sets. (b) The result of UNION(g, e).

Operations

» MAKE-SET(x): create a new linked list whose only object is x.
» O(1) time. make-set * Ou)

» FIND-SET(x):return the pointer from x back to the representative.
» O(1) time. find-set: Ow)

» UNION(x, y): append y's list onto the end of x's list.
» Use x’s tail pointer to find the end.
» Need to update the representative for each object on y's list.
» Take time linear in the length of y's list.

Union (%X, Y) : @‘é@égﬁ U-listD g -1B=E bY
AX %R BRaA 6% BA & O (Y-list 1@3d)

| v Y l | a luq—l R
Union (x4, X3) @'4’) * x;l'j—) xa] = [X)] Xa)= X3 = (X3 »[x3

Worst case for implementation of the union

» Suppose that we have objects x,, x,,..., x, and execute the
following sequence of operations.

Operation Number of objects updated
MAKE-SET(x1) 1
MAKE-SET(x») 1

MAKE-SET(x5)

1
UNION(x2, x1) 1 Ow)
UNION(x3, x2) 2 0Ot2)
UNION(x4, X3) 3 Ot3)
UNION (X5, Xn—1) n—10tn=1)

» The running time for the 2n - 1 operations is ©(n?).
» The amortized time of an operation is ®(n).

2E 53t UMD 127 BYRY §)
104" % By list k

» Append the smaller list onto the longer.

» With this simple weighted-union heuristic, a single union can

still take €2(n) time, e.g., if both sets have n/2 members.

 Bounion (PZI amBye3R
» Theorem 21.1 Using the weighted-unlo‘rg; ﬁeurlstcha seque??ce

of m MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, takes
O(m+nlgn) time. 84ffl. O (m+ nlgn)

Proof:

» Each MAKE-SET and FIND-SET still takes O(1), and there are O(m) of
them. make-set 3o find-cet & R 00y 2 &% Otm)

» How many times can each object’s representative pointer be
updated? 3% . 5P W&k Vv yE S
It must be in the smaller set each time.

times updated ~ size of resulting set x B9 4¢ & & #b P Ur 4%,

% é Ei xBRz § 5B
>

¥ 3 > 8

£ . .

W = ok B-@xinnid

- 59D ogn =2
: 2 Union 8 ¥ O (nfgn) g5 R8
lgn >n

» The first time x's representative pointer was updated, the
resulting set must have had at least 2 members.

» Therefore, each representative is updated <lgn times.

» The total time used in updating pointers over all UNION
operations is thus O(nlgn).

» The total time for the entire sequence is thus O(m+nlgn).

Outline

» Disjoint-set operations

» Linked list representation of disjoint sets

» Disjoint-set forests Bdisjoint forest set % ¥ 1

» Analysis of union by rank with path compression

Disjoint-set forest

» In a disjoint-set forest:
» Each tree represents one set; M+ee & 5% 5
» Each member points only to its parent;
» The root contains the representative; and voot 3 & & & by ik
» The root is its own parent. voot & B 2 b3 pavent

()
R 0
UNION(e,g) " ° @
OO @) — -
@) (©)
© ®

Operations

» MAKE-SET(x): creates a tree with just one node.
» O(1) time. make-set: F-18 RE - 18 = £ by Akt

» FIND-SET(x): follow parent pointers until we find the root.
» O(h) time. find -set : ¥t EE, B4PAZE B B Om , HH E

» The nodes visited on this path toward the root constitute the find
path.

» UNION(x, y): causes the root of one tree to point to the root of

the other. Union: 3% BR & é‘)‘)fg#‘iog PR 4 55&4.,&{#
» O(h) time. DR EE, B R % Oh)

» Problem: A sequence of n — 1 UNION operations may create a
tree that is just a linear chain of n nodes. & %6%, £ & £ - 1®chain

® @) - @ %)@...@ oloMe
©) (U

initial Union(O, 1) Q Union(1, 2)

DO~ OO o1

02
(D
Union(3, 4) Q

Union(2, 3)

Heuristics to improve the running time

» By using two heuristics, however, we can achieve a running time

that is almost linear in the total number of operations m.
BT BB E
» Union by rank: make the root of the tree with fewer nodes a
child of the root of tree with more nodes.

» Don’t actually use size. 43 vank 1)+ By #5% & A £ BI FitByvoot B 3
» Use rank, which is an upper bound on height of node.
» Make the root with the smaller rank into a child of the root with the

larger rank. vank HiEBY LR vank], 3,

» Path compression: make all nodes on the find path direct
children of root. 42 find path B3 5 £ T A vost BYR +

Path compression 434md poth e85 2% K voot 8RS

@ A 7
o A FIND-SET(a)
i A S 1

(a) (b)

» Triangles represent subtrees whose roots are the nodes shown.

» In Figure b, each node on the find path now points directly to
the root after executing FIND-SET(a).

Pseudocode for disjoint-set forest

MAKE-SET(x)
1. px] < x

2. rank[x] < 0 LINK(x, y)
1. if rank[x] > rank[y] tbifi ronk , tEh‘é‘é&

UNION(x, y) 2. | p[)E] rx

1. LINK(FIND-SET(x), FIND-SET 3. elsepxj<y

(x)) 4. if rank[x] = rank[y] #8 ¥ RF, rank ho |

5. rankly] < rank[y] + 1

FIND-SET(x)

1. if x # p[x]

2. p[x] < FIND-SET(p[x])

3. return p[x] Find - set 9 218 pass

pass 1= & 3% ¥ voot

» The FIND-SET procedure is a two-pass method: pass2: 43 path £ BY

i . . i node %\3"5 R
> it makes one pass up the find path to find the root; and | 4 € ¢35z

» a second pass back down the find path to update each node to
point directly to root.

» Union by rank yields a running time of O(mlgn).
2B union by rank , B PS5 - O(mflgn)

» Path-compression gives a worst-case running time
O(n+f-(1+log,, ¢,n)).

» n=number of MAKE-SET operations.
» f = number of FIND-SET operations.

QB poth- compression , BYRY: O (n+ £ (1+L0g, + g,,M))

» When we use both union by rank and path compression, the
worst-case running time is O(ma/(n)), where a(n) is a very slowly
growing function. @ 8512 @ union by rank Fo path - compression

BE AR : O (md(n

» In any conceivable application, a(n) <4. £ S @ BItER F sl

(0 for 0<n<2,

| for n=3, Ay aes T ;
am=q2 ford=nsr, L = muchgreater-than”

3 for 8<n<2047, ! 10%° . te 3t I B9 BV 32

4 for 2048<n< A, <---

