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Overview
 Disjoint-set data structures 
 Also known as “union find.”

 Maintain a collection S = {S1, S2,…, Sk} of disjoint dynamic sets.

 Each set is identified by a representative, which is some member of 
the set.

 Doesn’t matter which member is the representative, as long as if 
we ask for the representative twice without modifying the set, we 
get the same answer both times.

3



Operations
 Disjoint-set data structures support the following three 

operations.
 MAKE-SET(x): create a new set Si = {x}, and add Si to S.

 UNION(x, y): unite the dynamic sets that contain x and y, say Sx and 
Sy, into a new set. 
 if x∈Sx, y∈Sy, then S←S−Sx−Sy∪{Sx∪Sy}.

 The representative of the resulting set is any member of Sx∪Sy .

 Since we require the sets in the collection to be disjoint, we "destroy" 
sets Sx and Sy .

 FIND-SET(x): return the representative of the set containing x.
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Analyzing the running times
 Two parameters:
 n = number of elements = number of MAKE-SET operations.
 m = total number of MAKE-SET, UNION, and FIND-SET operations.

 Analysis:
 m ≥ n.
 Have at most n − 1 UNION operations.
 Assume that the first n operations are MAKE-SET.
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An application
 Determining the connected components
 For a graph G = (V, E), vertices u, v are in same connected 

component if and only if there's a path between them.

 Connected components partition vertices into equivalence classes.
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CONNECTED-COMPONENTS(G)
1. for each vertex v∈V[G]
2. MAKE-SET(v)
3. for each edge (u, v)∈E[G]
4. if FIND-SET(u) ≠ FIND-SET(v)
5. UNION(u, v)

SAME-COMPONENT(u, v)
1. if FIND-SET(u) = FIND-SET(v)
2. return TRUE
3. else return FALSE
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Linked list representation
 The first object in each linked list serves as its set's 

representative.
 Each object in the linked list contains
 a set member, 
 a pointer to the next set member, and 
 a pointer back to the representative.

 Each list maintains pointers head, to the representative, and tail, 
to the last object in the list.
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Figure 21.2 (a) Linked-list representations of two
sets. (b) The result of UNION(g, e).



Operations
 MAKE-SET(x): create a new linked list whose only object is x.
 O(1) time.

 FIND-SET(x):return the pointer from x back to the representative.
 O(1) time.

 UNION(x, y): append y's list onto the end of x's list. 
 Use x’s tail pointer to find the end.
 Need to update the representative for each object on y's list.
 Take time linear in the length of y's list.
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Worst case for implementation of the union
 Suppose that we have objects x1, x2,..., xn and execute the 

following sequence of operations.

 The running time for the 2n − 1 operaƟons is Θ(n2).
 The amortized time of an operation is Θ(n).
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A weighted-union heuristic1/2
 Append the smaller list onto the longer.
 With this simple weighted-union heuristic, a single union can 

still take Ω(n) time, e.g., if both sets have n/2 members.
 Theorem 21.1 Using the weighted-union heuristic, a sequence

of m MAKE-SET, UNION, and FIND-SET operations, 
n of which are MAKE-SET operations, takes 
O(m+n lgn) time.

Proof:
 Each MAKE-SET and FIND-SET still takes O(1), and there are O(m) of 

them.
 How many times can each object’s representative pointer be 

updated?
 It must be in the smaller set each time.
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A weighted-union heuristic2/2

 The first time x's representative pointer was updated, the 
resulting set must have had at least 2 members.

 Therefore, each representative is updated ≤lgn times.
 The total time used in updating pointers over all UNION

operations is thus O(n lgn).
 The total time for the entire sequence is thus O(m+n lgn).
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Disjoint-set forest
 In a disjoint-set forest: 
 Each tree represents one set;
 Each member points only to its parent;
 The root contains the representative; and
 The root is its own parent.
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Operations
 MAKE-SET(x): creates a tree with just one node.
 O(1) time.

 FIND-SET(x): follow parent pointers until we find the root.
 O(h) time.
 The nodes visited on this path toward the root constitute the find 

path.

 UNION(x, y): causes the root of one tree to point to the root of 
the other. 
 O(h) time.

 Problem: A sequence of n − 1 UNION operations may create a 
tree that is just a linear chain of n nodes.

17



…

initial Union(0, 1)

n-110 …

0

n-121 …

1

0

n-132 …

2

1

n-143 …

0

Union(1, 2)

Union(2, 3)

3

2

n-154 …

1

Union(3, 4)0

n-2

n-3

n-1

1

0



Heuristics to improve the running time
 By using two heuristics, however, we can achieve a running time 

that is almost linear in the total number of operations m.

 Union by rank: make the root of the tree with fewer nodes  a 
child of the root of tree with more nodes.
 Don’t actually use size.
 Use rank, which is an upper bound on height of node.
 Make the root with the smaller rank into a child of the root with the 

larger rank.

 Path compression: make all nodes on the find path direct 
children of root.
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 Triangles represent subtrees whose roots are the nodes shown.

 In Figure b, each node on the find path now points directly to 
the root after executing FIND-SET(a).

Path compression
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FIND-SET(a)



Pseudocode for disjoint-set forest

 The FIND-SET procedure is a two-pass method:
 it makes one pass up the find path to find the root; and
 a second pass back down the find path to update each node to 

point directly to root.
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FIND-SET(x)
1. if x ≠ p[x]
2. p[x] ← FIND-SET(p[x]) 
3. return p[x]

MAKE-SET(x)
1. p[x] ← x
2. rank[x] ← 0

UNION(x, y)
1. LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)
1. if rank[x] > rank[y]
2. p[y] ← x
3. else p[x] ← y
4. if rank[x] = rank[y]
5. rank[y] ← rank[y] + 1



Effect of the heuristics on the running time1/2
 Union by rank yields a running time of O(m lgn).

 Path-compression gives a worst-case running time 
Θ(n+ f ⋅ (1 +log2+ f/nn)).

 n = number of MAKE-SET operations.
 f  = number of FIND-SET operations.
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Effect of the heuristics on the running time2/2
 When we use both union by rank and path compression, the 

worst-case running time is O(mα(n)), where α(n) is a very slowly 
growing function.

 In any conceivable application, α(n) ≤ 4.
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