Algorithms

Chapter 19
Fibonacci Heaps

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Structure of Fibonacci heaps

» Mergeable-heap operations

» Decreasing a key and deleting a node
» Bounding the maximum degree

» A mergeable heap is any data structure that supports the
following five operations, in which each element has a key:

>

MAKE-HEAP() creates and returns a new heap containing no
elements. & $-4@:2542 4 = §6)heop

INSERT(H, x) inserts element x, whose key field has already been
filled in, into heap H. 487 % % 3% x heap H ®

MINIMUM(H) returns a pointer to the element in heap H whose key
isminimum. @ R Bax %

EXTRACT-MIN(H) deletes the element from heap H whose key is
minimum, returning a pointer to the element. 12 & Ml 8% B H % %

UNION(H,, H,) creates and returns a new heap that contains all the
elements of heaps H, and H,. Heaps H, and H, are "destroyed" by
this operation. 514 H, 3o H.

» Fibonacci heaps support the mergeable-heap operations and
the following two operations. 43z £ % &) key value B2 F% k

» DECREASE-KEY(H, X, k) assigns to element x the new key value k,
which is assumed to be no greater than its current key value.

» DELETE(H, x) deletes node x from heap H. ¥R % X 4 H® M B

Binary heap Binomial heap Fibonacci heap

Procedure (worst case) (worst case) (amortized)
MAKE-HEAP O(1) O(1) O(1)

INSERT O(lgn) O(lgn) O(1)
MINIMUM O(1) O(lgn) O(1)
EXTRACT-MIN O(lgn) O(lgn) O(lgn) A
UNION O(n) O(lgn) O(1))
DECREASE-KEY O(lgn) O(lgn) O(1) Bg‘
DELETE O(lgn) O(lgn) O(lgn) A

Fibonacci heaps in theory and practice

» From a theoretical standpoint, Fibonacci heaps are especially
desirable when the number of EXTRACT-MIN and DELETE
operations is small relative to the number of other operations
performed. R iR £ : £ Extra - Min 0 DELETE BY =R 49’ 2% , Fiboracei % §

» From a practical point of view, the constant factors and
programming complexity of Fibonacci heaps make them less
desirable than ordinary binary (or k-ary) heaps for most
applications, except for certain applications that manage large

amounts of data. ez .. @E %49 £ %o wding b §5 &
% 2 binavy heaps 43 85 36
ExFTRA

binomial hesp = binomial trees + binomial heop propert-es
Fibonacci heap= rooted trees + min- heap property

» A Fibonacci heap is a collection of rooted trees that are
min-heap ordered, i.e., each tree obeys the min-heap property.

» In a min-heap, the min-heap property is that the key of a node is
greater than or equal to the key of its parent. A& ¢ %

@ @
pavent
T rght
left r9
Sﬂol-’ng € @ 2 S;bll“"g
N2
child

(b) %&

Pave nt

: : left 1 right
Structure of Fibonacci heaps, /; guing « &89 <iving
» In a Fibonacci heap: child

» The children of x are linked together in a circular, doubly linked list,
which we call the child list of x.

p[x]: parent; child[x]: any one of its children.
left[x]: right sibling; right[x]: right sibling.
degree[x]: the number of children; n[H]: the number of nodes in H.

vV v VvV v

mark[x]:indicates whether node x has lost a child since the last time

x was made the child of another node. movk{x]: B it & 320~ Bu€3 34§
. . Az Artaas
» min[H]: a pointer to the root of a tree containing a minimum key;

this node is called the minimum node of the Fibonacci heap.
If a Fibonacci heap H is empty, then min[H] = NIL.

» The roots of all the trees are linked together in a circular, doubly
linked list, which we call the root list.

Potential function

» We shall use the potential method to analyze the performance
of Fibonacci heap operations. @ potential method % 5 #F Fibonacci heop

» The potential of Fibonacci heap H is then defined by
212RB IR root By {B® i
®(H) = t(H) + 2m(H). 24E % % e:q 2 695 48
» t(H): the number of trees in the root list of H.
» m(H): the number of marked nodes in H.
» Example: The potential of the Fibonacci heap in the previous

slideis5+2-3=11.

» We shall assume that a unit of potential can pay for a constant
amount of work, where the constant is sufficiently large.
1B3ES R B LB B4R A

Maximum degree je;:«

g MOximum degree Dw) & %o

» Assume that there is a known upper bound D(n) on the
maximum degree of any node in an n-node Fibonacci heap.

» Problem 19-2(d) shows that when only the mergeable-heap
operations are supported, D(n) < |lgn].
'b\DQ "9' ‘YE mergeab\e heap operators : D(n) & LQgh_,
» In Sections 19.3 and 19.4, we shall show that when we support

DECREASE-KEY and DELETE as well, D(n) = O(lgn).

w2 A ho £ £ 1€ DECREASE - KEY o DELETE
2 D) = Otlgn)

Outline

» Structure of Fibonacci heaps

» Mergeable-heap operations

» Decreasing a key and deleting a node
» Bounding the maximum degree

Creating a new Fibonacci heap

» We describe and analyze the mergeable-heap operations as
implemented for Fibonacci heaps.

» The mergeable-heap operations on Fibonacci heaps delay work
as long as possible. % 8 :E 163§ ,RARIEM FIeI 421t

» The MAKE-FIB-HEAP procedure allocates and returns the
Fibonacci heap object H, where n[H] = 0 and min[H] = NIL.

» The potential of the empty Fibonacci heap is ®(H) = 0.
» Because t(H) =0 and m(H) = 0. MAKE - FIB-HEAP(): 1 (H)=0
B min{H) =NIL
» The amortized cost of MAKE-FIB-HEAP is thus equal to its O(1)
actualcost. TE-=GERLE + 1€ho BT 22

= OM+0
T 0w

Inserting a node 4 z%sx heapt

» The following procedure inserts node x into Fibonacci heap H.

Example: FIB-HEAP-INSERT(H, 21)
FIB-HEAP-INSERT(H, x)

1. degree[x] < O 1 min[H]
> p[x] < NIL 3ZRR3 x BY
3. child[x] < NIL Heap Hx @@ a7 04
4. left[x] < x “/52%8 (30) @} /}46
5. right[x] < x J g 35}
6. mark[x] < FALSE
7. concatenate the root list containing x
with root list H Y3 nzoH« B3E & -8 min[H]
8. if min[H] = NIL or key[x] < key[min[H]]

@3)(7)-21) (z“‘ 7

9, then min[H] < x WBIYBmin DD 4 6
10. n[Hl«<n[H]+1 ‘8) (30 _

iBiL ho) @ 35

Inserting a node

» t(H') = t(H)+1 and m(H') = m(H). » root 1B he 1 ££2 3692 47T
» H:the input Fibonacci heap.
» H':the resulting Fibonacci heap.

» The increase in potential is
((t(H) + 1) + 2m(H)) = (t(H) + 2m(H)) = 1. BhobrKzr: BH)- B (H)=]

» Since the actual cost is O(1), the amortized cost is O(1) + 1 = O(1).
Ingert E’)?@%: ﬁiE ?é% + t%’ o BY%5 Er

» Finding the minimum node 20w+ =00

» The minimum node of H is given by the pointer min[H]. T 4§ retwn pointer

» Because the potential of H does not change, the amortized cost of
this operation is equal to its O(1) actual cost.

@h’ﬁiﬁﬁ'g, By LA Minimum éf)?t% =0wW+0

Os@ @SSO g5 OS@ 5® 5O
Wt HL T L et Hp et ot

Os® @ s O > 0s@® s @ s

3T

Uniting two Fibonacci heaps

» The following procedure unites Fibonacci heaps H, and H,,
destroying H, and H, in the process. 4t H.%oH2 By Union

FIB-HEAP-UNION(H,, H,)

© N o U A~ W N RE

H <— MAKE-FIB-HEAP()

min[H] <~ min[H,] @ 42 H. Fo H BY root list

concatenate the root list of H, with the root list of H, & % - t8
if (min[H,] = NIL) or (min[H,] # NIL and min[H,)] < mi”[H1])J L',)
then min[H] <- min[H,] ® r:jmég‘;;] i?nm‘n Mal%
nlH] nlH,] + n[H,] e
free the objects H, and H, DA root list B s 448
return H B oA @5 - i R & 0 B3 P9

» The change in potential is

O(H) - (D(H,) + D(H,)) HEETLN
= (t(H) + 2m(H)) - ((t(H,) + 2 m(H,)) + (t(H,) + 2 m(H,))) = 0.

» The amortized cost is therefore equal to its O(1) actual cost.

Extracting the minimum node @1% g e & oz ¢

» The process of extracting the minimum node
» is the most complicated, and Extract min &€ 54

» is also where the delayed work of consolidating occurs.

e e
FIB-HEAP-EXTRACT-MIN(H) @E‘f 515 B ThiE
1. z< min[H] Z=E"9‘J‘5:’7-E§
2. if z# NiIL
3. then for each child x of z -
il vroot |;$t
4. do add x to the root list ofHJ 4826y @3 E8Au R voo
5. p[x] < NIL
6. remove z from the root list of H 43 z 4it root list ¥% &
7. if z = right[z]) _
8. then min[H] < NiL) REZ-1B &, minlM)=NIL
9. else min[H] « right|z]) 35 1% BITHAE
10. CONSOLIDATE(H)
11. n[H] < n[H] -1

12. return z

| voot | list By 5% | D4% . if & - 1@ root B> degree
Consolidating the root list 7390

» Repeatedly executing the following steps until every root in the
root list has a distinct degree value. © #: %18 degree 8 3 53 vost

» Find two roots x and y in the root list with the same degree, where
key[x] < keyly]. ® 43 AP B, A BYE voot
» Link y to x: Calling FIB-HEAP-LINK to make y a child of x.

» An auxiliary array A[0..D(n[H])] is used to finding two roots with
the same degree. @ -1t 5IAT0 - 0 (nlv)1] 4 ¥ ph4y #81@) degree By voot X Joy

» We will see how to calculate the upper bound D(n[H]) in Section

19.4. sEEIRE X 2 oA
i degree Dinn1)
FIB-HEAP-LINK(H, y, X) 482 32 : key [%] ¢ key LyJ

1. remove y from the root list of H
2. make y a child of x, incrementing degree[x]
3. mark[y] < FALSE 42 y (2B @

CONSOLIDATE procedure

40P B 4B R By degvee ,ﬁt:mevge:.)\ BY ‘é’ii%

2 & 1@ voot T S 168 - =0

CONSOLIDATE(H)

O o N UkEWDNRE

el e e o =
©® N o bk WD O

for i < 0 to D(n[H])
do A[i] < NIL } o(b(n))
for each node win the root listof H
dox«—w
d < degree|x]
while A[d] # NIL
do y < A[d]
if key[x] > key|[y]
then exchange x <&y
FIB-HEAP-LINK(H, y, x)
A[d] < NIL
d—d+1

Another node

G

Ald] <« x
min[H] < NIL
for i < 0 to D(n[H])

do if A[i] # NIL

28323

€ Dwny

then add A[/] to the root list of H

if min[H] = NIL or key[A[i]] < key[min[H]]

then min[H] <« A[i]

> O(D(n)+t(H))

with the same
degree as x.

Time complexity
= O(D(n)+t(H))

Since there are at most

D(n) + t(H) — 1 roots

root list
3

> 0(D(n))
:\:ﬁalj\bt)

J voot st

w: BEE G EIDBY oot

min[H] min[H]
v v
@ @ el (3128) @7)-QD-)-52)1-(8)-17) 20
gt
39 (a1) 35)
i D

© 80® @zé EEGIeR] @:? 2

()123

o' &@ @g

(h)

g)

(k)

@)

@ root Iist BYA 3K
Amortized cost of extracting the minimum

O root B3 2%
B D(n)+)
ETS I-E2:

voot bist BY 549 AE
unmark node

» D(H) = t(H) + 2m(H), ®(H’) < (D(n) + 1) + 2m(H).
» The amortized cost is thus at most
O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) — (t(H) + 2m(H))
GERE = O(D(n)) + O(t(H)) — t(H) 1% ho By 7 EX
=0(D(n)). Extvo-MinBIRE REBYRE + Rho By £
» since we can scale up the units of potential to dominate the constant
hidden in O(t(H)). B BEBELRTE 4. 2 ot - Tt <0

Outline

» Structure of Fibonacci heaps

» Mergeable-heap operations

» Decreasing a key and deleting a node
» Bounding the maximum degree

waEemnai
Decreasing a key and deleting a node

» We show
» decreasing a key in O(1) amortized time, and D(n) = O(lgn)
_ _ . ' will show in
» deleting a node in O(D(n)) amortized time. Section 19.4
FIB-HEAP-DECREASE-KEY(H, X, k) Y42 key (& T 4>
if k>k
' I th eylx] | ke | ter th K ,,\ "cut" the link
2 en error new Key IS greater than current Kkey between x and
3 key[x] < k <§J) > 0(1) its pgrent Y,
4. y < plx] making x a root.
5. if y # NIL and key[x] < key[y] key(x] < keyCy3d,
6 then CUT(H, x, y) 43 x F% 3 voot list
7 CASCADING-CUT(H, ¥) }O(c) Suppose that
8 if key[x] < key[min[H]] CASCADING-CUT is
9 then min[H] < x } 1) recursively called
¢ times.

» Actual cost of FIB-HEAP-DECREASE-KEY = O(1) + O(c). hBait &

CUT(H, x, y)
1. remove x from the child list of y, decrementing degree|y]
2 add x to the root list of H
Oy
3. p[x] < NIL 3
4 mark[x] < FALSE x H3xIB D) root list BUL ¥ Sk BR@
E-2-R ZREUTY

CASCADING-CUT(H, y)

1 z < plyl As soon as the second child
2 if z# NIL has been lost, we cut y from
3 then if mark[y] = FALSE its parent, making it a new
4. then mark[y] < TRUE root.

5 else CUT(H, y, 2)

6 CASCADING-CUT(H, z)

_h4iL45 5. GPARSITLE-@HUF wRELT S 24D, F2F) root list

min[H]

(a): The initial Fibonacci heap.

(b): The node with key 46 has its key
decreased to 15.

(c)—(e): The node with key 35 has its
key decreased to 5.

Amortized cost of decreasing a key

» Each recursive call of CASCADING-CUT, except for the last one,

cuts a marked node and clears the mark bit.
, 1: 43 x % B vout list
4 t(H)Zt(H) ++C_1. C-"*gggc:/?r%«g“=25§é

» ¢—1trees produced by cascading cuts, and 1 for the tree rooted

at x. & - 1B cut 8 S unmark — 5 node
= , -t (23
R 1% - =R 9 RE mark - T node
» At most m(H) — (c-1) + 1 marked nodes. Croot B mark

» ¢— 1 nodes unmarked by cascading cuts, and the last call may
mark a node.

» O(H)-D(H) < ((t(H) + ¢) + 2(m(H) —c + 2)) — (t(H) + 2m(H))
=4 —cC. 318 hb% %2
» The amortized cost is thus at most #%&: GEBIRE + o ho BB £

O(c) +4 - c= 0(1), since we can scale up the units of potential
to dominate the constant hidden in O(c).

$Jr

Deleting a node ez

» We assume that there is no key value of —oo currently in the
Fibonacci heap.

FIB-HEAP-DELETE(H, x)
1. FIB-HEAP-DECREASE-KEY(H, x, —0)
2. FIB-HEAP-EXTRACT-MIN(H)

» The amortized cost is O(1) + O(D(n)).

Outline

» Structure of Fibonacci heaps

» Mergeable-heap operations

» Decreasing a key and deleting a node
» Bounding the maximum degree

Bounding the maximum degree ienR+ degree, Lg¢n,

» We shall show that D(n) < |log,n|, where ¢@is the golden
1++/5

2

» Fork=0,1,2,...,the kth Fibonacci number is defined by
the recurrence #& 43316 % x Bk

ratio, defined as ¢= =1.61803.

0 if k=0,

F =41 if k=1,
F_ +F ifk>2 that explains the name

L' k-1) = <

"Fibonacci heaps"

» Lemma 19.4 Let x be any node in a Fibonacci heap, and let k

= degreel[x]. Then, size(x) > F,,, > ¢. 3k £ L9
Ly 14 % & root BY subtree 4
» Corollary 19.5 The maximum degree D(n) of any node in an

n-node Fibonacci heap is O(lgn).

