
AlgorithmsChapter 19Fibonacci HeapsAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

2

Overview1/2
 A mergeable heap is any data structure that supports the

following five operations, in which each element has a key:
 MAKE-HEAP() creates and returns a new heap containing no

elements.
 INSERT(H, x) inserts element x, whose key field has already been

filled in, into heap H.
 MINIMUM(H) returns a pointer to the element in heap H whose key

is minimum.
 EXTRACT-MIN(H) deletes the element from heap H whose key is

minimum, returning a pointer to the element.
 UNION(H1, H2) creates and returns a new heap that contains all the

elements of heaps H1 and H2. Heaps H1 and H2 are "destroyed" by
this operation.

3

Overview2/2
 Fibonacci heaps support the mergeable-heap operations and

the following two operations.
 DECREASE-KEY(H, x, k) assigns to element x the new key value k,

which is assumed to be no greater than its current key value.
 DELETE(H, x) deletes node x from heap H.

4

Procedure
Binary heap
(worst case)

Binomial heap
(worst case)

Fibonacci heap
(amortized)

MAKE-HEAP Θ(1) Θ(1) Θ(1)
INSERT Θ(lgn) Θ(lgn) Θ(1)
MINIMUM Θ(1) Θ(lgn) Θ(1)
EXTRACT-MIN Θ(lgn) Θ(lgn) Θ(lgn)
UNION Θ(n) Θ(lgn) Θ(1)
DECREASE-KEY Θ(lgn) Θ(lgn) Θ(1)
DELETE Θ(lgn) Θ(lgn) Θ(lgn)

Fibonacci heaps in theory and practice
 From a theoretical standpoint, Fibonacci heaps are especially

desirable when the number of EXTRACT-MIN and DELETE
operations is small relative to the number of other operations
performed.

 From a practical point of view, the constant factors and
programming complexity of Fibonacci heaps make them less
desirable than ordinary binary (or k-ary) heaps for most
applications, except for certain applications that manage large
amounts of data.

5

Structure of Fibonacci heaps1/2
 A Fibonacci heap is a collection of rooted trees that are

min-heap ordered, i.e., each tree obeys the min-heap property.
 In a min-heap, the min-heap property is that the key of a node is

greater than or equal to the key of its parent.

6

min[H]

min[H]

Structure of Fibonacci heaps2/2
 In a Fibonacci heap:
 The children of x are linked together in a circular, doubly linked list,

which we call the child list of x.
 p[x]: parent; child[x]: any one of its children.
 left[x]: right sibling; right[x]: right sibling.
 degree[x]: the number of children; n[H]: the number of nodes in H.
 mark[x]:indicates whether node x has lost a child since the last time

x was made the child of another node.
 min[H]: a pointer to the root of a tree containing a minimum key;

this node is called the minimum node of the Fibonacci heap.
 If a Fibonacci heap H is empty, then min[H] = NIL.

 The roots of all the trees are linked together in a circular, doubly
linked list, which we call the root list.

7

Potential function
 We shall use the potential method to analyze the performance

of Fibonacci heap operations.

 The potential of Fibonacci heap H is then defined by

Φ(H) = t(H) + 2m(H).

 t(H): the number of trees in the root list of H.
 m(H): the number of marked nodes in H.

 Example: The potential of the Fibonacci heap in the previous
slide is 5 + 2·3 = 11.

 We shall assume that a unit of potential can pay for a constant
amount of work, where the constant is sufficiently large.

8

Maximum degree
 Assume that there is a known upper bound D(n) on the

maximum degree of any node in an n-node Fibonacci heap.

 Problem 19-2(d) shows that when only the mergeable-heap
operations are supported, D(n) ≤ ⌊lgn⌋.

 In Sections 19.3 and 19.4, we shall show that when we support
DECREASE-KEY and DELETE as well, D(n) = O(lgn).

9

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

10

Creating a new Fibonacci heap
 We describe and analyze the mergeable-heap operations as

implemented for Fibonacci heaps.

 The mergeable-heap operations on Fibonacci heaps delay work
as long as possible.

 The MAKE-FIB-HEAP procedure allocates and returns the
Fibonacci heap object H, where n[H] = 0 and min[H] = NIL.

 The potential of the empty Fibonacci heap is Φ(H) = 0.
 Because t(H) = 0 and m(H) = 0.

 The amortized cost of MAKE-FIB-HEAP is thus equal to its O(1)
actual cost.

11

Inserting a node
 The following procedure inserts node x into Fibonacci heap H.

12

FIB-HEAP-INSERT(H, x)
1. degree[x] ← 0
2. p[x] ← NIL
3. child[x] ← NIL
4. left[x] ← x
5. right[x] ← x
6. mark[x] ← FALSE
7. concatenate the root list containing x

with root list H
8. if min[H] = NIL or key[x] < key[min[H]]
9. then min[H] ← x
10. n[H] ← n[H] + 1

Example: FIB-HEAP-INSERT(H, 21)

min[H]

min[H]

Inserting a node
 t(H′) = t(H)+1 and m(H′) = m(H).
 H: the input Fibonacci heap.
 H′: the resulting Fibonacci heap.

 The increase in potential is
((t(H) + 1) + 2m(H)) − (t(H) + 2m(H)) = 1.

 Since the actual cost is O(1), the amortized cost is O(1) + 1 = O(1).

 Finding the minimum node
 The minimum node of H is given by the pointer min[H].
 Because the potential of H does not change, the amortized cost of

this operation is equal to its O(1) actual cost.

13

Uniting two Fibonacci heaps
 The following procedure unites Fibonacci heaps H1 and H2,

destroying H1 and H2 in the process.

 The change in potential is
Φ(H) − (Φ(H1) + Φ(H2))
= (t(H) + 2m(H)) − ((t(H1) + 2 m(H1)) + (t(H2) + 2 m(H2))) = 0.

 The amortized cost is therefore equal to its O(1) actual cost.
14

FIB-HEAP-UNION(H1, H2)
1. H ← MAKE-FIB-HEAP()
2. min[H] ← min[H1]
3. concatenate the root list of H2 with the root list of H1
4. if (min[H1] = NIL) or (min[H2] ≠ NIL and min[H2] < min[H1])
5. then min[H] ← min[H2]
6. n[H] ← n[H1] + n[H2]
7. free the objects H1 and H2
8. return H

Extracting the minimum node
 The process of extracting the minimum node
 is the most complicated, and
 is also where the delayed work of consolidating occurs.

15

FIB-HEAP-EXTRACT-MIN(H)
1. z ← min[H]
2. if z ≠ NIL
3. then for each child x of z
4. do add x to the root list of H
5. p[x] ← NIL
6. remove z from the root list of H
7. if z = right[z]
8. then min[H] ← NIL
9. else min[H] ← right[z]
10. CONSOLIDATE(H)
11. n[H] ← n[H] – 1
12. return z

Consolidating the root list
 Repeatedly executing the following steps until every root in the

root list has a distinct degree value.
 Find two roots x and y in the root list with the same degree, where

key[x] ≤ key[y].
 Link y to x: Calling FIB-HEAP-LINK to make y a child of x.

 An auxiliary array A[0..D(n[H])] is used to finding two roots with
the same degree.
 We will see how to calculate the upper bound D(n[H]) in Section

19.4.

16

FIB-HEAP-LINK(H, y, x)
1. remove y from the root list of H
2. make y a child of x, incrementing degree[x]
3. mark[y] ← FALSE

CONSOLIDATE procedure

17

CONSOLIDATE(H)
1. for i ← 0 to D(n[H])
2. do A[i] ← NIL
3. for each node w in the root list of H
4. do x ← w
5. d ← degree[x]
6. while A[d] ≠ NIL
7. do y ← A[d]
8. if key[x] > key[y]
9. then exchange x ↔ y
10. FIB-HEAP-LINK(H, y, x)
11. A[d] ← NIL
12. d ← d + 1
13. A[d] ← x
14. min[H] ← NIL
15. for i ← 0 to D(n[H])
16. do if A[i] ≠ NIL
17. then add A[i] to the root list of H
18. if min[H] = NIL or key[A[i]] < key[min[H]]
19. then min[H] ← A[i]

O(D(n))

O(D(n)+t(H))

Another node
with the same
degree as x.

O(D(n))

Since there are at most
D(n) + t(H) – 1 roots

Time complexity
= O(D(n)+t(H))

min[H] min[H]

min[H]

Amortized cost of extracting the minimum

 Φ(H) = t(H) + 2m(H), Φ(H’) ≤ (D(n) + 1) + 2m(H).
 The amortized cost is thus at most

O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) – (t(H) + 2m(H))
= O(D(n)) + O(t(H)) – t(H)
= O(D(n)).

 since we can scale up the units of potential to dominate the constant
hidden in O(t(H)).

20

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

21

Decreasing a key and deleting a node
 We show
 decreasing a key in O(1) amortized time, and
 deleting a node in O(D(n)) amortized time.

 Actual cost of FIB-HEAP-DECREASE-KEY = O(1) + O(c).

22

D(n) = O(lgn)
will show in
Section 19.4

FIB-HEAP-DECREASE-KEY(H, x, k)
1. if k > key[x]
2. then error "new key is greater than current key“
3. key[x] ← k
4. y ← p[x]
5. if y ≠ NIL and key[x] < key[y]
6. then CUT(H, x, y)
7. CASCADING-CUT(H, y)
8. if key[x] < key[min[H]]
9. then min[H] ← x

"cut" the link
between x and
its parent y,
making x a root.

O(1)

O(1)

O(c) Suppose that
CASCADING-CUT is
recursively called
c times.

Decreasing a key2/2

23

CASCADING-CUT(H, y)
1. z ← p[y]
2. if z ≠ NIL
3. then if mark[y] = FALSE
4. then mark[y] ← TRUE
5. else CUT(H, y, z)
6. CASCADING-CUT(H, z)

As soon as the second child
has been lost, we cut y from
its parent, making it a new
root.

CUT(H, x, y)
1. remove x from the child list of y, decrementing degree[y]
2. add x to the root list of H
3. p[x] ← NIL
4. mark[x] ← FALSE

min[H] min[H]

min[H] min[H]

min[H]
(a): The initial Fibonacci heap.
(b): The node with key 46 has its key

decreased to 15.
(c)–(e): The node with key 35 has its

key decreased to 5.

Amortized cost of decreasing a key
 Each recursive call of CASCADING-CUT, except for the last one,

cuts a marked node and clears the mark bit.
 t(H’) = t(H) + 1 + c – 1.
 c – 1 trees produced by cascading cuts, and 1 for the tree rooted

at x.
 At most m(H) – (c – 1) + 1 marked nodes.
 c – 1 nodes unmarked by cascading cuts, and the last call may

mark a node.
 Φ(H’) – Φ(H) ≤ ((t(H) + c) + 2(m(H) – c + 2)) – (t(H) + 2m(H))

= 4 – c.
 The amortized cost is thus at most

O(c) + 4 – c = O(1), since we can scale up the units of potential
to dominate the constant hidden in O(c).

25

Deleting a node
 We assume that there is no key value of –∞ currently in the

Fibonacci heap.

 The amortized cost is O(1) + O(D(n)).

26

FIB-HEAP-DELETE(H, x)
1. FIB-HEAP-DECREASE-KEY(H, x, -∞)
2. FIB-HEAP-EXTRACT-MIN(H)

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

27

Bounding the maximum degree
 We shall show that D(n) ≤ ⌊logφn⌋, where φ is the golden

ratio, defined as .

 For k = 0, 1, 2, . . . , the kth Fibonacci number is defined by
the recurrence

 Lemma 19.4 Let x be any node in a Fibonacci heap, and let k
= degree[x]. Then, size(x) ≥ Fk+2 ≥ φk.

 Corollary 19.5 The maximum degree D(n) of any node in an
n-node Fibonacci heap is O(lgn).

28

61803.1
2

51 =+=φ








≥+
=
=

=

−− .2 if
,1 if 1
,0 if 0

21 kFF
k
k

F

kk

k
that explains the name
"Fibonacci heaps"

