
AlgorithmsChapter 19Fibonacci HeapsAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

2

Overview1/2
 A mergeable heap is any data structure that supports the

following five operations, in which each element has a key:
 MAKE-HEAP() creates and returns a new heap containing no

elements.
 INSERT(H, x) inserts element x, whose key field has already been

filled in, into heap H.
 MINIMUM(H) returns a pointer to the element in heap H whose key

is minimum.
 EXTRACT-MIN(H) deletes the element from heap H whose key is

minimum, returning a pointer to the element.
 UNION(H1, H2) creates and returns a new heap that contains all the

elements of heaps H1 and H2. Heaps H1 and H2 are "destroyed" by
this operation.

3

Overview2/2
 Fibonacci heaps support the mergeable-heap operations and

the following two operations.
 DECREASE-KEY(H, x, k) assigns to element x the new key value k,

which is assumed to be no greater than its current key value.
 DELETE(H, x) deletes node x from heap H.

4

Procedure
Binary heap
(worst case)

Binomial heap
(worst case)

Fibonacci heap
(amortized)

MAKE-HEAP Θ(1) Θ(1) Θ(1)
INSERT Θ(lgn) Θ(lgn) Θ(1)
MINIMUM Θ(1) Θ(lgn) Θ(1)
EXTRACT-MIN Θ(lgn) Θ(lgn) Θ(lgn)
UNION Θ(n) Θ(lgn) Θ(1)
DECREASE-KEY Θ(lgn) Θ(lgn) Θ(1)
DELETE Θ(lgn) Θ(lgn) Θ(lgn)

Fibonacci heaps in theory and practice
 From a theoretical standpoint, Fibonacci heaps are especially

desirable when the number of EXTRACT-MIN and DELETE
operations is small relative to the number of other operations
performed.

 From a practical point of view, the constant factors and
programming complexity of Fibonacci heaps make them less
desirable than ordinary binary (or k-ary) heaps for most
applications, except for certain applications that manage large
amounts of data.

5

Structure of Fibonacci heaps1/2
 A Fibonacci heap is a collection of rooted trees that are

min-heap ordered, i.e., each tree obeys the min-heap property.
 In a min-heap, the min-heap property is that the key of a node is

greater than or equal to the key of its parent.

6

min[H]

min[H]

Structure of Fibonacci heaps2/2
 In a Fibonacci heap:
 The children of x are linked together in a circular, doubly linked list,

which we call the child list of x.
 p[x]: parent; child[x]: any one of its children.
 left[x]: right sibling; right[x]: right sibling.
 degree[x]: the number of children; n[H]: the number of nodes in H.
 mark[x]:indicates whether node x has lost a child since the last time

x was made the child of another node.
 min[H]: a pointer to the root of a tree containing a minimum key;

this node is called the minimum node of the Fibonacci heap.
 If a Fibonacci heap H is empty, then min[H] = NIL.

 The roots of all the trees are linked together in a circular, doubly
linked list, which we call the root list.

7

Potential function
 We shall use the potential method to analyze the performance

of Fibonacci heap operations.

 The potential of Fibonacci heap H is then defined by

Φ(H) = t(H) + 2m(H).

 t(H): the number of trees in the root list of H.
 m(H): the number of marked nodes in H.

 Example: The potential of the Fibonacci heap in the previous
slide is 5 + 2·3 = 11.

 We shall assume that a unit of potential can pay for a constant
amount of work, where the constant is sufficiently large.

8

Maximum degree
 Assume that there is a known upper bound D(n) on the

maximum degree of any node in an n-node Fibonacci heap.

 Problem 19-2(d) shows that when only the mergeable-heap
operations are supported, D(n) ≤ ⌊lgn⌋.

 In Sections 19.3 and 19.4, we shall show that when we support
DECREASE-KEY and DELETE as well, D(n) = O(lgn).

9

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

10

Creating a new Fibonacci heap
 We describe and analyze the mergeable-heap operations as

implemented for Fibonacci heaps.

 The mergeable-heap operations on Fibonacci heaps delay work
as long as possible.

 The MAKE-FIB-HEAP procedure allocates and returns the
Fibonacci heap object H, where n[H] = 0 and min[H] = NIL.

 The potential of the empty Fibonacci heap is Φ(H) = 0.
 Because t(H) = 0 and m(H) = 0.

 The amortized cost of MAKE-FIB-HEAP is thus equal to its O(1)
actual cost.

11

Inserting a node
 The following procedure inserts node x into Fibonacci heap H.

12

FIB-HEAP-INSERT(H, x)
1. degree[x] ← 0
2. p[x] ← NIL
3. child[x] ← NIL
4. left[x] ← x
5. right[x] ← x
6. mark[x] ← FALSE
7. concatenate the root list containing x

with root list H
8. if min[H] = NIL or key[x] < key[min[H]]
9. then min[H] ← x
10. n[H] ← n[H] + 1

Example: FIB-HEAP-INSERT(H, 21)

min[H]

min[H]

Inserting a node
 t(H′) = t(H)+1 and m(H′) = m(H).
 H: the input Fibonacci heap.
 H′: the resulting Fibonacci heap.

 The increase in potential is
((t(H) + 1) + 2m(H)) − (t(H) + 2m(H)) = 1.

 Since the actual cost is O(1), the amortized cost is O(1) + 1 = O(1).

 Finding the minimum node
 The minimum node of H is given by the pointer min[H].
 Because the potential of H does not change, the amortized cost of

this operation is equal to its O(1) actual cost.

13

Uniting two Fibonacci heaps
 The following procedure unites Fibonacci heaps H1 and H2,

destroying H1 and H2 in the process.

 The change in potential is
Φ(H) − (Φ(H1) + Φ(H2))
= (t(H) + 2m(H)) − ((t(H1) + 2 m(H1)) + (t(H2) + 2 m(H2))) = 0.

 The amortized cost is therefore equal to its O(1) actual cost.
14

FIB-HEAP-UNION(H1, H2)
1. H ← MAKE-FIB-HEAP()
2. min[H] ← min[H1]
3. concatenate the root list of H2 with the root list of H1
4. if (min[H1] = NIL) or (min[H2] ≠ NIL and min[H2] < min[H1])
5. then min[H] ← min[H2]
6. n[H] ← n[H1] + n[H2]
7. free the objects H1 and H2
8. return H

Extracting the minimum node
 The process of extracting the minimum node
 is the most complicated, and
 is also where the delayed work of consolidating occurs.

15

FIB-HEAP-EXTRACT-MIN(H)
1. z ← min[H]
2. if z ≠ NIL
3. then for each child x of z
4. do add x to the root list of H
5. p[x] ← NIL
6. remove z from the root list of H
7. if z = right[z]
8. then min[H] ← NIL
9. else min[H] ← right[z]
10. CONSOLIDATE(H)
11. n[H] ← n[H] – 1
12. return z

Consolidating the root list
 Repeatedly executing the following steps until every root in the

root list has a distinct degree value.
 Find two roots x and y in the root list with the same degree, where

key[x] ≤ key[y].
 Link y to x: Calling FIB-HEAP-LINK to make y a child of x.

 An auxiliary array A[0..D(n[H])] is used to finding two roots with
the same degree.
 We will see how to calculate the upper bound D(n[H]) in Section

19.4.

16

FIB-HEAP-LINK(H, y, x)
1. remove y from the root list of H
2. make y a child of x, incrementing degree[x]
3. mark[y] ← FALSE

CONSOLIDATE procedure

17

CONSOLIDATE(H)
1. for i ← 0 to D(n[H])
2. do A[i] ← NIL
3. for each node w in the root list of H
4. do x ← w
5. d ← degree[x]
6. while A[d] ≠ NIL
7. do y ← A[d]
8. if key[x] > key[y]
9. then exchange x ↔ y
10. FIB-HEAP-LINK(H, y, x)
11. A[d] ← NIL
12. d ← d + 1
13. A[d] ← x
14. min[H] ← NIL
15. for i ← 0 to D(n[H])
16. do if A[i] ≠ NIL
17. then add A[i] to the root list of H
18. if min[H] = NIL or key[A[i]] < key[min[H]]
19. then min[H] ← A[i]

O(D(n))

O(D(n)+t(H))

Another node
with the same
degree as x.

O(D(n))

Since there are at most
D(n) + t(H) – 1 roots

Time complexity
= O(D(n)+t(H))

min[H] min[H]

min[H]

Amortized cost of extracting the minimum

 Φ(H) = t(H) + 2m(H), Φ(H’) ≤ (D(n) + 1) + 2m(H).
 The amortized cost is thus at most

O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) – (t(H) + 2m(H))
= O(D(n)) + O(t(H)) – t(H)
= O(D(n)).

 since we can scale up the units of potential to dominate the constant
hidden in O(t(H)).

20

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

21

Decreasing a key and deleting a node
 We show
 decreasing a key in O(1) amortized time, and
 deleting a node in O(D(n)) amortized time.

 Actual cost of FIB-HEAP-DECREASE-KEY = O(1) + O(c).

22

D(n) = O(lgn)
will show in
Section 19.4

FIB-HEAP-DECREASE-KEY(H, x, k)
1. if k > key[x]
2. then error "new key is greater than current key“
3. key[x] ← k
4. y ← p[x]
5. if y ≠ NIL and key[x] < key[y]
6. then CUT(H, x, y)
7. CASCADING-CUT(H, y)
8. if key[x] < key[min[H]]
9. then min[H] ← x

"cut" the link
between x and
its parent y,
making x a root.

O(1)

O(1)

O(c) Suppose that
CASCADING-CUT is
recursively called
c times.

Decreasing a key2/2

23

CASCADING-CUT(H, y)
1. z ← p[y]
2. if z ≠ NIL
3. then if mark[y] = FALSE
4. then mark[y] ← TRUE
5. else CUT(H, y, z)
6. CASCADING-CUT(H, z)

As soon as the second child
has been lost, we cut y from
its parent, making it a new
root.

CUT(H, x, y)
1. remove x from the child list of y, decrementing degree[y]
2. add x to the root list of H
3. p[x] ← NIL
4. mark[x] ← FALSE

min[H] min[H]

min[H] min[H]

min[H]
(a): The initial Fibonacci heap.
(b): The node with key 46 has its key

decreased to 15.
(c)–(e): The node with key 35 has its

key decreased to 5.

Amortized cost of decreasing a key
 Each recursive call of CASCADING-CUT, except for the last one,

cuts a marked node and clears the mark bit.
 t(H’) = t(H) + 1 + c – 1.
 c – 1 trees produced by cascading cuts, and 1 for the tree rooted

at x.
 At most m(H) – (c – 1) + 1 marked nodes.
 c – 1 nodes unmarked by cascading cuts, and the last call may

mark a node.
 Φ(H’) – Φ(H) ≤ ((t(H) + c) + 2(m(H) – c + 2)) – (t(H) + 2m(H))

= 4 – c.
 The amortized cost is thus at most

O(c) + 4 – c = O(1), since we can scale up the units of potential
to dominate the constant hidden in O(c).

25

Deleting a node
 We assume that there is no key value of –∞ currently in the

Fibonacci heap.

 The amortized cost is O(1) + O(D(n)).

26

FIB-HEAP-DELETE(H, x)
1. FIB-HEAP-DECREASE-KEY(H, x, -∞)
2. FIB-HEAP-EXTRACT-MIN(H)

Outline
 Structure of Fibonacci heaps
 Mergeable-heap operations
 Decreasing a key and deleting a node
 Bounding the maximum degree

27

Bounding the maximum degree
 We shall show that D(n) ≤ ⌊logφn⌋, where φ is the golden

ratio, defined as .

 For k = 0, 1, 2, . . . , the kth Fibonacci number is defined by
the recurrence

 Lemma 19.4 Let x be any node in a Fibonacci heap, and let k
= degree[x]. Then, size(x) ≥ Fk+2 ≥ φk.

 Corollary 19.5 The maximum degree D(n) of any node in an
n-node Fibonacci heap is O(lgn).

28

61803.1
2

51 =+=φ

≥+
=
=

=

−− .2 if
,1 if 1
,0 if 0

21 kFF
k
k

F

kk

k
that explains the name
"Fibonacci heaps"

