
AlgorithmsChapter 19*Binomial HeapsAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Binomial trees and binomial heaps
 Operations on binomial heaps

2

Overview
 If we don't need the UNION operation, ordinary binary heaps,

as used in heapsort, work well.
 The Fibonacci heaps are amortized time bounds.
 All of the three heaps are inefficient in their support of the

operation SEARCH.

3

Procedure
Binary heap
(worst case)

Binomial heap
(worst case)

Fibonacci heap
(amortized)

MAKE-HEAP Θ(1) Θ(1) Θ(1)
INSERT Θ(lgn) Θ(lgn) Θ(1)
MINIMUM Θ(1) Θ(lgn) Θ(1)
EXTRACT-MIN Θ(lgn) Θ(lgn) Θ(lgn)
UNION Θ(n) Θ(lgn) Θ(1)
DECREASE-KEY Θ(lgn) Θ(lgn) Θ(1)
DELETE Θ(lgn) Θ(lgn) Θ(lgn)

Rooted and ordered trees1/2
 A rooted tree is a tree in which one of the vertices is

distinguished from the others.

 The distinguished vertex is called the root of the tree.

 An ordered tree is a rooted tree in which the children of each
node are ordered.

 That is, if a node has k children, then there is a first child, a
second child,..., and a kth child.

4

Rooted and ordered trees2/2

 The above two trees are different when considered to be
ordered trees, but the same when considered to be just rooted
trees.

5

Binomial trees1/2
 The binomial tree Bk is an ordered tree defined recursively as

follows.
 the binomial tree B0 consists of a single node.
 Bk consists of two Bk-1 that are linked together: the root of one is the

leftmost child of the root of the other.

6

Binomial trees2/2

7

Another way of looking at the binomial tree Bk.

Properties of binomial trees1/3
 Lemma 19.1: (Properties of binomial trees)

For the binomial tree Bk,
1. there are 2k nodes,
2. the height of the tree is k,
3. there are exactly nodes at depth i for i = 0, 1, ..., k,
4. the root has degree k, which is the largest, and
5. if the children of the root are numbered from left to right by

k − 1, k − 2,..., 0, child i is the root of a subtree Bi.

Proof: By induction on k.
 Each property holds for B0 is trivial.
 Assume that the lemma holds for Bk−1.

8

The term "binomial
tree" comes from.

Properties of binomial trees2/3
 1. There are 2k nodes.
 Bk = two copies of Bk-1, and so Bk has 2k−1 + 2k−1 = 2k nodes.

 2. The height of the tree is k.
 Two copies of Bk− 1 are linked to form Bk.
 Maximum depth in Bk = Maximum depth in Bk− 1 + 1.
 By the inductive hypothesis, this maximum depth is (k−1) + 1 = k.

 3. There are exactly nodes at depth i for i = 0, 1, ..., k.
 Let D(k, i) be the number of nodes at depth i of binomial tree Bk.

9

Properties of binomial trees3/3
 4. The root has degree k, which is the largest.
 The only node with greater degree in Bk than in Bk − 1 is the root,

which has one more child than in Bk − 1.
 Since the root of Bk − 1 has degree k − 1, the root of Bk has degree k.

 5. If the children of the root are numbered from left to right by
k−1, k−2,..., 0, child i is the root of a subtree Bi.

 By the inductive hypothesis, the children of the root of Bk − 1 are
roots of Bk − 2 , Bk − 3,..., B0.

 When Bk − 1 is linked to Bk− 1, the children of the resulting root are
roots of Bk − 1, Bk − 2,..., B0.

 Corollary 19.2 The maximum degree of any node in an n-node
binomial tree is lgn. (From properties 1 and 4)

10

Binomial heaps
 A binomial heap H is a set of binomial trees that satisfies the

following binomial-heap properties.
1. Each binomial tree in H is min-heap ordered:

key(x) ≥ key(p(x)).
2. For any nonnegative integer k, there is at most one binomial

tree in H whose root has degree k.

11

Observations
 The first property tells us that the root of a min-heap-ordered

tree contains the smallest key in the tree.
 The second property implies that an n-node binomial heap H

consists of at most ⌊lgn⌋+ 1 binomial trees.
 the binary representation of n has ⌊lg n⌋ + 1 bits, say

<b⌊lgn⌋, b⌊lgn⌋−1,…,b0>, so that .
 By property 1 of Lemma 19.1, binomial tree Bi appears in H if and

only if bit bi = 1.

12

 =
= n

i
i

ibn lg

0
2

binary representation
= <1, 1, 0, 1>

Representing binomial heaps
 In a binomial heap:
 binomial tree is stored in the left-child, right-sibling representation.
 key[x]: key; p[x]: parent; child[x]: leftmost children.
 sibling[x]: immediately right sibling;
 degree[x]: the number of children.

13

The degrees of the
roots strictly
increase as we
traverse the root list.

Outline
 Binomial trees and binomial heaps
 Operations on binomial heaps

14

Operations on binomial heaps
 MAKE-BINOMIAL-HEAP():
 Allocate and return an object H, where head[H] = NIL.
 Running time = Θ(1).

 BINOMIAL-HEAP-MINIMUM(H):
 Since a binomial heap is

min-heap-ordered, the
minimum key must reside
in a root node.

 At most ⌊lgn⌋+1 roots to
check.

 Running time = O(lgn).

15

BINOMIAL-HEAP-MINIMUM(H)
1. y ← NIL
2. x ← head[H]
3. min ← ∞
4. while x ≠ NIL
5. do if key[x] < min
6. then min ← key[x]
7. y ← x
8. x ← sibling[x]
9. return y

Operations on binomial heaps
 BINOMIAL-LINK(y, z):
 Bk − 1 rooted at y + Bk− 1 rooted at z Bk rooted at z.
 Running time = Θ(1).

 BINOMIAL-HEAP-MERGE(H1, H2):
 Merges the root lists of H1 and H2 into a single linked list that is

sorted by degree into monotonically increasing order.
 Pseudocode is left as Exercise 19.2-1.

16

BINOMIAL-LINK(y, z)
1. p[y] ← z
2. sibling[y] ← child[z]
3. child[z] ← y
4. degree[z] ← degree[z] + 1

Uniting two binomial heaps
 BINOMIAL-HEAP-UNION(H1, H2):
 Phase 1: merge the root lists of H1 and H2 into a single linked list H

in monotonically increasing order.
 Phase 2: link roots of equal degree until at most one root remains

of each degree.
 Running time = O(lgn).

 Phase 1:
 Running time = O(lgn1) + O(lgn2).

 Phase 2:
 Each iteration of the while loop takes O(1) time.
 There are at most ⌊lgn1⌋ + ⌊lgn2⌋ + 2 iterations .

 Each iteration either advances the pointers one position or removes a root.
 Running time = O(lgn1) + O(lgn2).

17

H1 : n1 nodes;
H2 : n2 nodes.

BINOMIAL-HEAP-UNION(H1, H2)
1. H ← MAKE-BINOMIAL-HEAP()
2. head[H] ← BINOMIAL-HEAP-MERGE(H1, H2)
3. free the objects H1 and H2 but not the lists they point to
4. if head[H] = NIL
5. then return H
6. prev-x ← NIL
7. x ← head[H]
8. next-x ← sibling[x]
9. while next-x ≠ NIL
10. do if (degree[x] ≠ degree[next-x]) or

(sibling[next-x] ≠ NIL and degree[sibling[next-x]] = degree[x])
11. then prev-x ← x ▹ Cases 1 and 2
12. x ← next-x ▹ Cases 1 and 2
13. else if key[x] ≤ key[next-x]
14. then sibling[x] ← sibling[next-x] ▹ Case 3
15. BINOMIAL-LINK(next-x, x) ▹ Case 3
16. else if prev-x = NIL ▹ Case 4
17. then head[H] ← next-x ▹ Case 4
18. else sibling[prev-x] ← next-x ▹ Case 4
19. BINOMIAL-LINK(x, next-x) ▹ Case 4
20. x ← next-x ▹ Case 4
21. next-x ← sibling[x]
22. return H

18

19

20

21

22

Insert & Extract-Min
 BINOMIAL-HEAP-INSERT(H, x):
 Running time = O(lgn).

 BINOMIAL-HEAP-EXTRACT-MIN(H):
 Running time = O(lgn).

23

BINOMIAL-HEAP-INSERT(H, x)
1. make a one-node binomial heap H′ containing x
2. H ← BINOMIAL-HEAP-UNION(H, H′)

BINOMIAL-HEAP-EXTRACT-MIN(H)
1. find the root x with the minimum key in the root list of H,

and remove x from the root list of H
2. H′ ← MAKE-BINOMIAL-HEAP()
3. reverse the order of the linked list of x's children,

and set head[H′] to point to the head of the resulting list
4. H ← BINOMIAL-HEAP-UNION(H, H′)
5. return x

24

Decrease-Key & Delete
 BINOMIAL-HEAP-DECREASE-KEY(H, x, k):
 Running time = O(depth of x) = O(lgn).

25

BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
1. if k > key[x]
2. then error "new key is greater than current key“
3. key[x] ← k
4. y ← x
5. z ← p[y]
6. while z ≠ NIL and key[y] < key[z]
7. do exchange key[y] ↔ key[z]
8. y ← z
9. z ← p[y]

 BINOMIAL-HEAP-DELETE(H):
 Running time = O(lgn).
BINOMIAL-HEAP-DELETE(H, x)
1. BINOMIAL-HEAP-DECREASE-KEY(H, x, -∞)
2. BINOMIAL-HEAP-EXTRACT-MIN(H)

26

