Algorithms Chapter 19* Binomial Heaps

Associate Professor: Ching-Chi Lin 林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Binomial trees and binomial heaps
- Operations on binomial heaps

Overview 注意: Fibonacci 是 amortized analysis

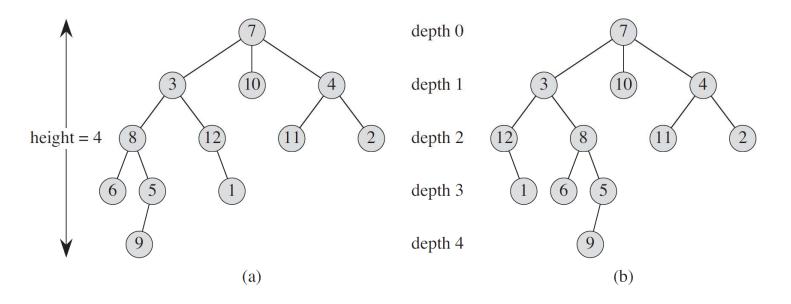
- If we don't need the UNION operation, ordinary binary heaps, as used in heapsort, work well. 不考慮 union > binary heap 不錯〇
- The Fibonacci heaps are amortized time bounds.
- All of the three heaps are inefficient in their support of the operation SEARCH. search 時都不是很有效季

Procedure	Binary heap (worst case)	Binomial heap (worst case)	Fibonacci heap (amortized)
Μακε-Ηεαρ	Θ(1)	Θ (1)	Θ(1)
INSERT	$\Theta(\lg n)$	$\Theta(\lg n)$	Θ(1)
MINIMUM	Θ(1)	$\Theta(\lg n)$	Θ(1)
Extract-Min	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$
UNION	$\Theta(n)$	$\Theta(\lg n)$	Θ(1)
Decrease-Key	$\Theta(\lg n)$	$\Theta(\lg n)$	Θ(1)
Delete	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$

Rooted and ordered trees_{1/2}

- A rooted tree is a tree in which one of the vertices is distinguished from the others.
- > The distinguished vertex is called the **root** of the tree.
- An ordered tree is a rooted tree in which the children of each node are ordered.
 An ordered tree is a rooted tree in which the children of each node are ordered.
- Fhat is, if a node has k children, then there is a first child, a second child,..., and a kth child.

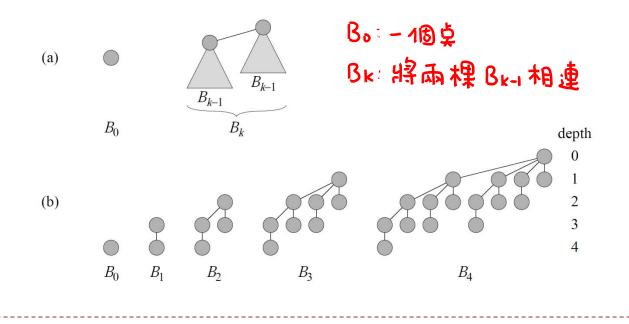
Rooted and ordered trees $_{2/2}$



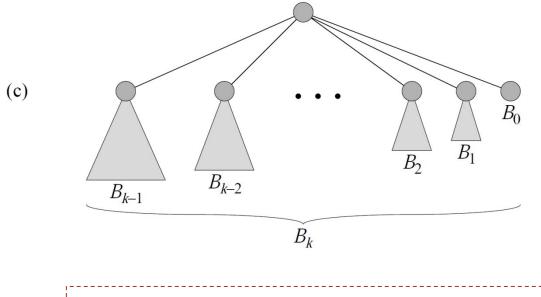
The above two trees are different when considered to be ordered trees, but the same when considered to be just rooted trees.
 LK ordered tree 角度着: 不同
 LK rooted tree 角度着: 相同

Binomial trees $_{1/2}$

- The binomial tree B_k is an ordered tree defined recursively as follows.
 - the binomial tree B_0 consists of a single node.
 - B_k consists of two B_{k-1} that are linked together: the root of one is the leftmost child of the root of the other.



Binomial trees_{2/2}



Another way of looking at the binomial tree B_k .

Properties of binomial trees $_{1/3}$

Lemma 19.1: (Properties of binomial trees)
For the binomial tree B_k,
1. there are 2^k nodes,
2. the height of the tree is k, 档的高度为k
3. there are exactly (^k_i) nodes at depth *i* for *i* = 0, 1, ..., *k*,
4. the root has degree k, which is the largest, and root by degree 为k 为最大
5. if the children of the root are numbered from left to right by k - 1, k - 2,..., 0, child *i* is the root of a subtree B_i. ③ c

Proof: By induction on k. 歸納法

- Each property holds for B₀ is trivial. 以上5個性質在Bo時都成立
- Assume that the lemma holds for B_{k-1} . $\mathbb{R} \stackrel{1}{\boxtimes} \mathbb{R}_{k-1}$ $\mathbb{R} \stackrel{1}{\boxtimes} \mathbb{C}$

Properties of binomial trees_{2/3}

▶ 1. There are 2^k nodes. B_k = 2 1^{fb} B_{k-1}

- B_k = two copies of B_{k-1} , and so B_k has $2^{k-1} + 2^{k-1} = 2^k$ nodes.
- 2. The height of the tree is k.
 Bree Bree is k.
 - Two copies of B_{k-1} are linked to form B_k . (k-i) + i = k
 - Maximum depth in B_k = Maximum depth in B_{k-1} + 1.
 - By the inductive hypothesis, this maximum depth is (k-1) + 1 = k.
- ▶ 3. There are exactly $\binom{k}{i}$ nodes at depth *i* for *i* = 0, 1, ..., *k*.
 - Let D(k, i) be the number of nodes at depth *i* of binomial tree B_k .

Properties of binomial trees_{3/3}

布 BK-1 相比, 唯 - degree 有变大的是root root 的 degree : K-1+1

Ble-1

3k-1

- 4. The root has degree k, which is the largest.
 - The only node with greater degree in B_k than in B_{k-1} is the root, which has one more child than in B_{k-1} .
 - Since the root of B_{k-1} has degree k 1, the root of B_k has degree k.
- ▶ 5. If the children of the root are numbered from left to right by k−1, k−2,..., 0, child i is the root of a subtree B_i.
 - By the inductive hypothesis, the children of the root of B_{k-1} are roots of B_{k-2}, B_{k-3},..., B₀.
 - When B_{k-1} is linked to B_{k-1} , the children of the resulting root are roots of B_{k-1} , B_{k-2} ,..., B_0 .
 - n個莫動 binomial tree,最大degree 為 lgn (性質 1 秒 性愛4) Corollary 19.2 The maximum degree of any node in an *n*-node

binomial tree is lgn. (From properties 1 and 4)

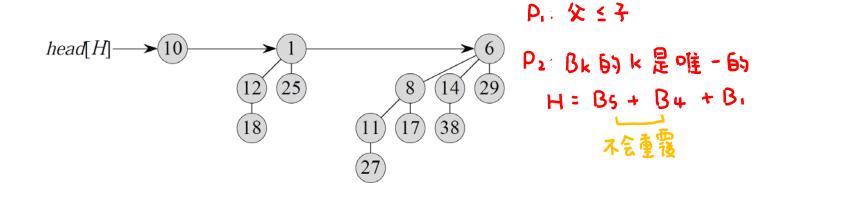
binomial heap = binomial trees + binomial heap properties

A binomial heap H is a set of binomial trees that satisfies the following binomial-heap properties.

P_i 1. Each binomial tree in *H* is **min-heap ordered**: key(x) ≥ key(p(x)).

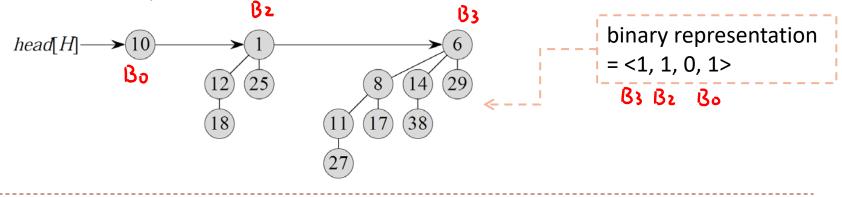
Binomial heaps

 P_2 2. For any nonnegative integer k, there is at most one binomial tree in H whose root has degree k.



Observations o+@⇒找最小:最多檢查 lgn+1個 roots

- The first property tells us that the root of a min-heap-ordered tree contains the smallest key in the tree. P. 最小值在某-個 root
- The second property implies that an *n*-node binomial heap *H* consists of at most $[\lg n]$ + 1 binomial trees. P_2 : binomial tree \mathbb{R} %
 - ▶ the binary representation of *n* has $[\lg n] + 1$ bits, say $< b_{\lfloor \lg n \rfloor}, b_{\lfloor \lg n \rfloor - 1}, ..., b_0 >$, so that $n = \sum_{i=0}^{\lfloor \lg n \rfloor} b_i 2^i$. 用 : 進位表示n,需要 29 · + 1 bit
 - By property 1 of Lemma 19.1, binomial tree B_i appears in H if and only if bit b_i = 1.



田左子右弟表示 binomial tree 注意: degree 由小到大 Representing binomial heaps

- In a binomial heap:
 - binomial tree is stored in the left-child, right-sibling representation.
 - key[x]: key; p[x]: parent; child[x]: leftmost children.
 - sibling[x]: immediately right sibling;
 - degree[x]: the number of children.



Outline

- Binomial trees and binomial heaps
- Operations on binomial heaps

Operations on binomial heaps

- MAKE-BINOMIAL-HEAP(): אח של זל
 - Allocate and return an object H, where head[H] = NIL.
 - Running time = $\Theta(1)$.

找最小

- ► BINOMIAL-HEAP-MINIMUM(*H*):
 - Since a binomial heap is min-heap-ordered, the minimum key must reside in a root node.
 - At most [lgn]+1 roots to check.
 - Running time = $O(\lg n)$.

BINOMIAL-HEAP-MINIMUM(H)

- 1. $y \leftarrow \text{NIL}$
- 2. $x \leftarrow head[H]$
- 3. $min \leftarrow \infty$
- 4. while $x \neq \text{NIL}$
- 5. **do if** key[x] < min
- 6. **then** $min \leftarrow key[x]$
- 7. $y \leftarrow x$
- 8. $x \leftarrow sibling[x]$
- 9. return y

Operations on binomial heaps

- BINOMIAL-LINK(y, z):
 - ► B_{k-1} rooted at $y + B_{k-1}$ rooted at $z \rightarrow B_k$ rooted at z.
 - Running time = $\Theta(1)$.

BINOMIAL-LINK(y, z)

- 1. $p[y] \leftarrow z$
- 2. $sibling[y] \leftarrow child[z]$
- 3. $child[z] \leftarrow y$
- 4. $degree[z] \leftarrow degree[z] + 1$

- BINOMIAL-HEAP-MERGE(H₁, H₂): 將H、和H2合併,使degree由小到大排列
 - Merges the root lists of H₁ and H₂ into a single linked list that is sorted by degree into monotonically increasing order.
 - Pseudocode is left as Exercise 19.2-1.

Uniting two binomial heaps

- ▶ BINOMIAL-HEAP-UNION(H1, H2): 第-步:先由小到大排 merge
 - Phase 1: merge the root lists of H_1 and H_2 into a single linked list H in monotonically increasing order.
 - Phase 2: link roots of equal degree until at most one root remains of each degree. 算=步: 做 進 位
 - Running time = $O(\lg n)$.
- Phase 1:
- Finase 1:
 Running time = $O(\lg n_1) + O(\lg n_2)$. <----</p>
- Phase 2:
 - Each iteration of the while loop takes O(1) time. ③ 1 和1, 無進位
 - There are at most $||gn_1| + ||gn_2| + 2$ iterations.
 - Each iteration either advances the pointers one position or removes a root.

① 1 和 0 , 黑進位

③ 1 和 0, 有進位

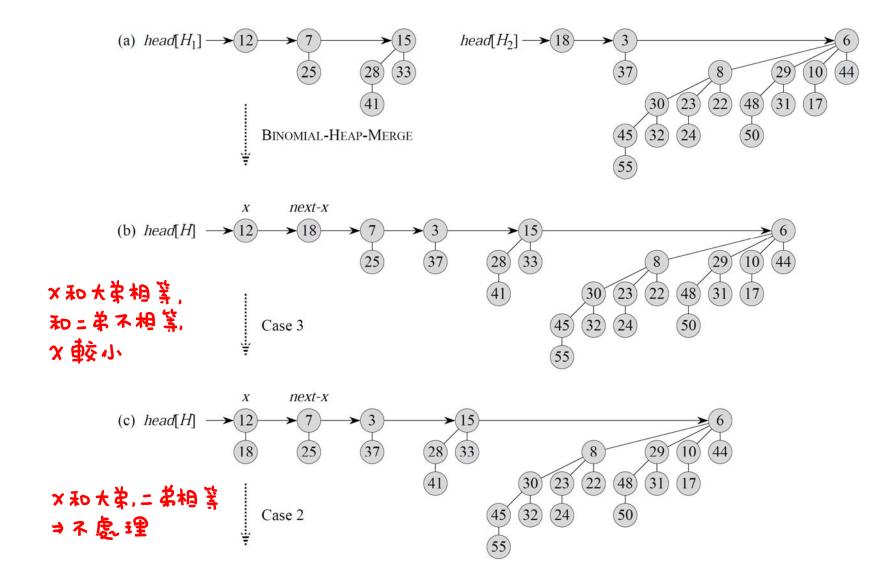
④1 和1, 有佳位

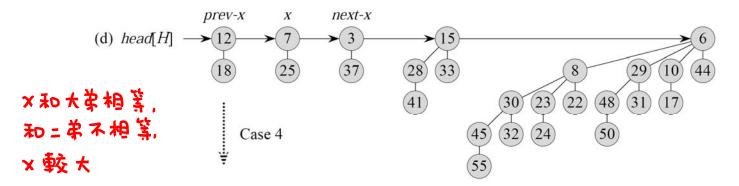
• Running time = $O(\lg n_1) + O(\lg n_2)$.

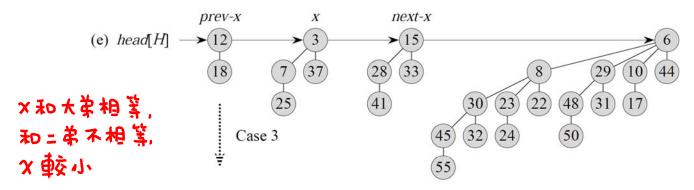
BINOMIAL-HEAP-UNION (H_1, H_2) $H \leftarrow MAKE-BINOMIAL-HEAP()$ 1. $head[H] \leftarrow BINOMIAL-HEAP-MERGE(H_1, H_2)$ 2. free the objects H_1 and H_2 but not the lists they point to 3. if head[H] = NIL4. then return H 5. prev-x \leftarrow NIL 6. $x \leftarrow head[H]$ 7. $next-x \leftarrow sibling[x]$ 8. while next-x≠NIL 文和大弟不相等 9. do if (degree[x] ≠ degree[next-x]) or × 和大弟=弟相等 10. $(sibling[next-x] \neq NIL and degree[sibling[next-x]] = degree[x])$ **then** *prev*-*x* \leftarrow *x* ▷ Cases 1 and 2 11. ⇒不處理 ▷ Cases 1 and 2 $x \leftarrow next-x$ 12. else if $key[x] \le key[next-x] \chi _{optimized}$ 13. **then** *sibling*[x] \leftarrow *sibling*[*next-x*] ▷ Case 3 14. BINOMIAL-LINK(*next-x, x*) ▷ Case 3 15. x和大常相等, 和二弟不相等。 else if prev-x = NIL × 較大 ▷ Case 4 16. **then** $head[H] \leftarrow next-x$ ▷ Case 4 17. else sibling[prev-x] \leftarrow next-x ▷ Case 4 18. BINOMIAL-LINK(*x*, *next-x*) ▷ Case 4 19. ▷ Case 4 $x \leftarrow next-x$ 20.

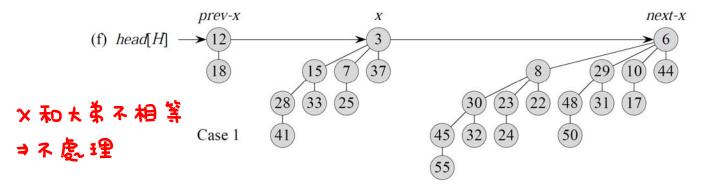
21. $next-x \leftarrow sibling[x]$

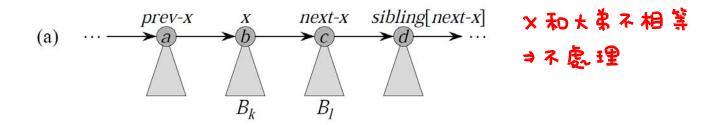
22. return *H*

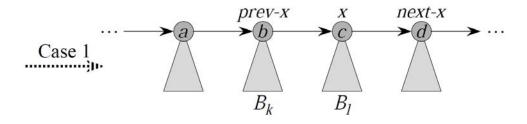


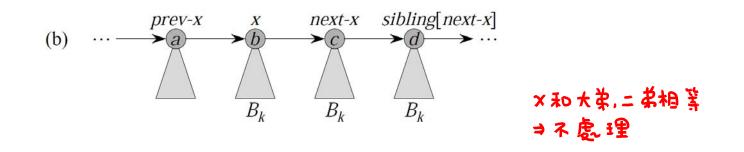


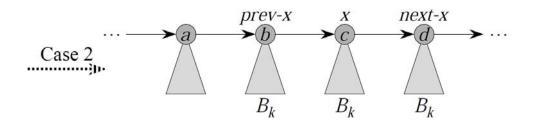


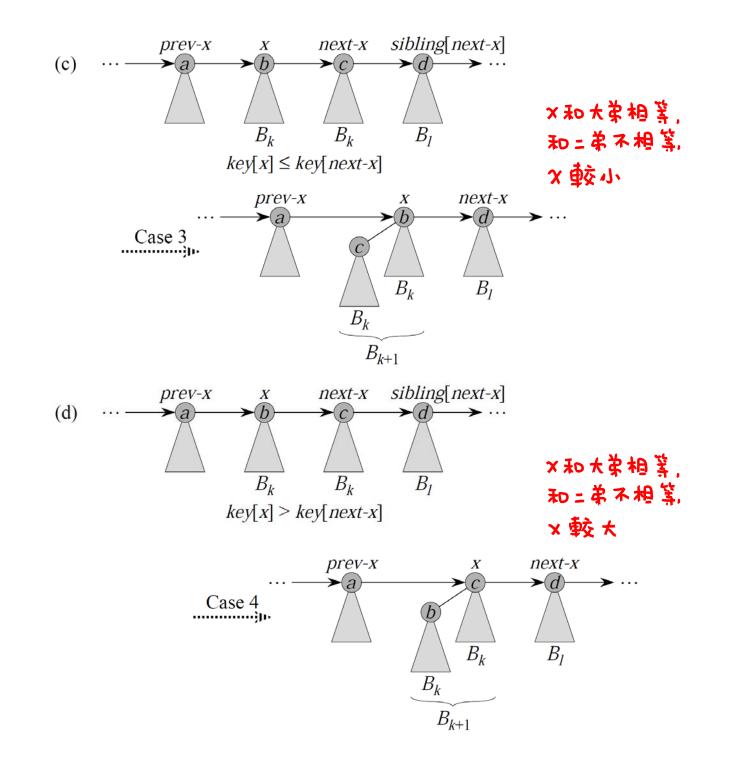












Insert & Extract-Min

- BINOMIAL-HEAP-INSERT(H, x):
 - Running time = $O(\lg n)$.

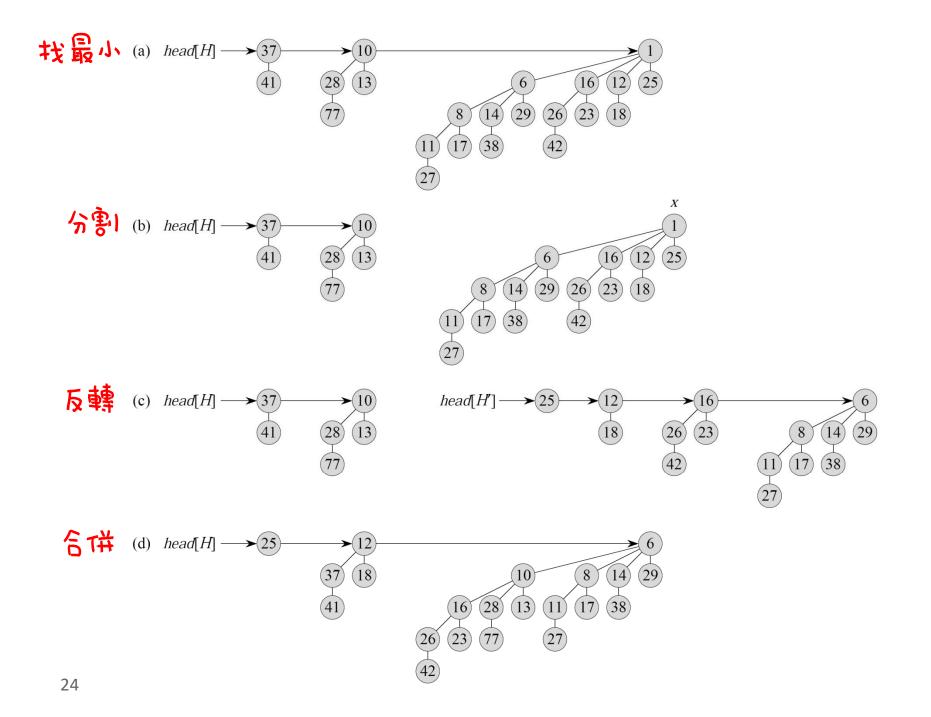
BINOMIAL-HEAP-INSERT(*H*, *x*)

- 1. make a one-node binomial heap H' containing x
- 2. $H \leftarrow \text{BINOMIAL-HEAP-UNION}(H, H')$
- ▶ BINOMIAL-HEAP-EXTRACT-MIN(H): 找最小,並將它移除
 - Running time = $O(\lg n)$.

BINOMIAL-HEAP-EXTRACT-MIN(H)

- 1. find the root x with the minimum key in the root list of H,] 我 最小, 分割 and remove x from the root list of H
- 2. $H' \leftarrow MAKE-BINOMIAL-HEAP()$
- 3. reverse the order of the linked list of x's children, and set head[H'] to point to the head of the resulting list $\int \mathbf{k} \mathbf{k}$
- 4. $H \leftarrow \text{BINOMIAL-HEAP-UNION}(H, H') \stackrel{<}{\frown} \uparrow \ddagger$
- 5. return *x*

の先做只有-個 node 的 heap H' ②將 H´ 和 H union



Decrease-Key & Delete

▶ BINOMIAL-HEAP-DECREASE-KEY(*H*, *x*, *k*):

• Running time = $O(\text{depth of } x) = O(\lg n)$.

```
BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
```

1. **if** *k* > *key*[*x*]

```
2. then error "new key is greater than current key"
```

```
3. key[x] \leftarrow k
```

```
4. y \leftarrow x
5. z \leftarrow p[y]
```

```
跟父親比,做交換
```

```
6. while z \neq \text{NIL} and key[y] < key[z]
```

```
7. do exchange key[y] \leftrightarrow key[z]
```

```
8. y \leftarrow z
9. z \leftarrow p[v]
```

```
BINOMIAL-HEAP-DELETE(H):
```

```
Running time = O(lgn).
```

BINOMIAL-HEAP-DELETE(H, x)

- **1**. BINOMIAL-HEAP-DECREASE-KEY($H, x, -\infty$)
- 2. BINOMIAL-HEAP-EXTRACT-MIN(H)

```
① 將×变成最小
```

② delete 最小

