Algorithms

Chapter 19*
Binomial Heaps

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Binomial trees and binomial heaps
» Operations on binomial heaps

Overview -i% Fibonacc: 2 oamortized onalysis

» If we don't need the UNION operation, ordinary binary heaps,
as used in heapsort, work well. z £ union 3 binary heap 2420

» The Fibonacci heaps are amortized time bounds.

» All of the three heaps are inefficient in their support of the
operation SEARCH. searchB3#B% 2 1% %1 %

Binary heap Binomial heap Fibonacci heap

Procedure (worst case) (worst case) (amortized)
MAKE-HEAP O(1) O(1) O(1)
INSERT O(lgn) O(lgn) O(1)
MiINIMUM O(1) O(lgn) O(1)
EXTRACT-MIN O(lgn) O(lgn) O(lgn)
UNION O(n) O(lgn) ©(1)
DECREASE-KEY O(lgn) O(lgn) O(1)
DELETE O(lgn) O(lgn) O(lgn)

Rooted and ordered trees, ,,
--------------------------- o BIBEERIBYE oot T T
» A rooted tree is a tree in which one of the vertices is

distinguished from the others.
» The distinguished vertex is called the root of the tree.

» An ordered tree is a rooted tree in which the children of each
node are ordered. Lrroot BIR+ B HEF ex: '5.;4@%@3-

Te@63
» That s, if a node has k children, then there is a first child, a

second child,..., and a kth child.

A (7) depth 0 (7)

@ 6 @ w1 @ 0 ©
height=4 (8) (1 @) (2 depti2 1 (B) @A) (2
©®® O deptn3 (D) (& (D

v (9) depth 4 (9)

(a) (b)

» The above two trees are different when considered to be

ordered trees, but the same when considered to be just rooted

trees. 14 ordeved tree BB E - 213

LA vooted tree & Fg 75 A8 16

» The binomial tree B, is an ordered tree defined recursively as
follows.

» the binomial tree B, consists of a single node.

» B, consists of two B, , that are linked together: the root of one is the
leftmost child of the root of the other.

. A Bo? "'ﬂ@é
@ ‘ 13“ Bk: 43R 42 B 40 B

By
\‘_‘\/’—‘/

» Lemma 19.1: (Properties of binomial trees)

For the binomial tree B,, The term "binomial
1. there are 2¥ nodes, tree” comes from.
2. the height of the tree is k, %t By & k
e height o ereels & . 72’ ﬁ()TDQ
3. there are exactly\ nodes at depth ifori= 0, 1
4. the root has de ree k, which is the largest, and
& Yootgé‘) o(e e Bk BR &

5. if the children of the root are numbered from left to right by
k-1,k-2,..,0,child i is the root of a subtree B.. [8 ¢

Proof: By induction on k. %3 49 :%
» Each property holds for By is trivial. 4 £ 518 1% %& Bo8% EpAk I
» Assume that the lemma holds for B, _,. 1285 Bk AL T

» 1. There are 2k nodes. Bk = 2 4@ Ry.,

» B, =two copies of B, ;, and so B, has 2k~1 + 2k-1 = 2knodes.

» 2. The height of the tree is k. Btk Buw B- R
» Two copies of B, _, are linked to form B,. (K-1) +1 = k
» Maximum depth in B, = Maximum depth in B, _, + 1.
» By the inductive hypothesis, this maximum depthis (k-1) + 1 = k.

» 3. There are exactly m nodes at depthifori=0,1, ..., k.
» Let D(k, i) be the number of nodes at depth i of binomial tree B,.
D(k,i) = Dk—1,i))+ Dk—1,i—1)

= (% B 1) + (k a l) (by the inductive hypothesis)
\ ! =1 Bi- Br-r
- (k) Br 3 < @ B Rty (by Exercise C.1-7) . . A R
Xt = B g4 B '\"[?;
e T
rs

5 B 48 et

: : : °B - degree B % & BY & root
Properties of binomial trees; ; . s zzgr:f: 9 oo

» 4. The root has degree k, which is the largest.
» The only node with greater degree in B, than in B,_, is the root,
which has one more child thanin B, _;.

» Since the root of B,_, has degree k - 1, the root of B, has degree k.

» 5. 1If the children of the root are numbered from left to right by
k-1, k-2,...,0, child i is the root of a subtree B..

» By the inductive hypothesis, the children of the root of B, _; are
rootsof B, _,, B, _3,..., B,

» When B, _,is linked to B, _,, the children of the resulting root are
rootsof B,_,, B,_,,..., By
n1B % By binomial tree , B % degree B Ign (ETE 1 Fo s R 4)
» Corollary 19.2 The maximum degree of any node in an n-node

. . . . root
binomial tree is Ign. (From properties 1 and 4) A
—— 4; ———-QK-Z—,—.—.»—,—Be—————-
10 B indwction

binomial heop = binomial trees
+

Binomial heaps binomial heop properties

» A binomial heap H is a set of binomial trees that satisfies the
following binomial-heap properties.

P. 1. Each binomial tree in H is min-heap ordered:
key(x) 2 key(p(x)).
P. 2. For any nonnegative integer k, there is at most one binomial

tree in H whose root has degree k. S .
binomial heop properties

P X <%
(1)

(12) (25
18)

head| H}—>{10)

P Bk by k B ol -6y
H=: Bs+ By + B

Observations o+@=># 8w 2%4% Ln 4+ 1 1B voots

» The first property tells us that the root of a min-heap-ordered
=)
tree contains the smallest key in the tree. P #=1: 164 Y - 18 root

» The second property implies that an n-node binomial heap H_
. . . P: - binom;al tree B %
+ :
consists of at most |Ign|+ 1 binomial trees & %5m,+ 118
» the binary representation of n has |Ig n| + 1 bits, say

Lign], i
<byignpr Byign|-17--Do>s SO thatn=> " "h2

R fimkin, BB YN 1 bt
» By property 1 of Lemma 19.1, binomial tree B; appears in H if and

lgn]|” ~|lgn

only if bit b, = 1.
B2
heaa{H]*)@ >(1) bi:iryi r(e)pr1e>sentation
Bo = ’ I U
B3 B2 Bo

M#%358E % binomial tree 5 - degree d A B %
Representing binomial heaps

» In a binomial heap:
» binomial tree is stored in the left-child, right-sibling representation.
» key[x]: key; p[x]: parent; child|x]: leftmost children.
» sibling[x]: immediately right sibling;
» degree[x]: the number of children.

10 _+ l;ev 1 6
0 = 2 3
head H—> /] egree > | — >
A /\
P / /
key —12 25 8 14 29
degree — N (l) 2 N = (‘)
hild ~~ - i -
- Y (R sibling /\ rA
The degrees of the 1 1 1 =
roots strictly ' i [
. /
increase as we il
traverse the root list. !

Outline

» Binomial trees and binomial heaps
» Operations on binomial heaps

Operations on binomial heaps

» MAKE-BINOMIAL-HEAP(): %D 48 1t
» Allocate and return an object H, where head[H] = NIL.
» Running time = O(1).

#i‘:i"g']‘
» BINOMIAL-HEAP-MINIMUM(H): BINOMIAL-HEAP-MINIMUM(H)
» Since a binomial heap is y < Nib
in-h g g E X < head[H]
min-heap-ordered, the min < oo

minimum key must reside
in a root node.

while x # NIL
do if key[x] < min
then min < key[x]
y X
x < sibling[x]

» At most [lgn]+1 roots to
check.

O o N o U bk W E

» Running time = O(lgn). return y

Operations on binomial heaps

» BINOMIAL-LINK(y, 2):
» B,_,rooted aty + B,_, rooted at z =» B, rooted at z.

» Running time = O(1).

BINOMIAL-LINK(y, 2) Y 2 w 2

L pllez Roer Ron —2 220 o 2R B
2. siblingly] < child(z] 7A)

3. child[z] <y

4 degree|z] < degree[z] + 1

» BINOMIAL-HEAP-MERGE(H,, H,): 42 H.foH, B4, 4% degree b §1 & HEHY
» Merges the root lists of H; and H, into a single linked list that is

sorted by degree into monotonically increasing order.

» Pseudocode is left as Exercise 19.2-1.

Uniting two binomial heaps

» BINOMIAL-HEAP-UNION(H,, H,): 'S -% % d 31 & HE merge

» Phase 1: merge the root lists of H; and H, into a single linked list H
in monotonically increasing order.

» Phase 2: link roots of equal degree until at most one root remains
of each degree. =% 18 & i

» Running time = O(lgn).
» Phase 1:
» Running time = O(lgn,) + O(lgn,).

H, : n; nodes;

A
H, : n, nodes.

OoO1» vO

© ! o 0,6 B
» Phase 2: ® 1 % O, B &/IL
» Each iteration of the while loop takes O(1) time. % : ;: “ ’ :‘g i;:i

» There are at most |lgn,| + |lgn,| + 2 iterations . '
Each iteration either advances the pointers one position or removes a root.

» Running time = O(lgn,) + O(lgn,).

BINOMIAL-HEAP-UNION(H,, H,)

1. H < MAKE-BINOMIAL-HEAP()
2. head[H] < BINOMIAL-HEAP-MERGE(H,, H,)
3. free the objects H, and H, but not the lists they point to
4. if head[H] = NIL
5. then return H
6. prev-x <— NIL
7. X < head[H]
8. next-x < sibling[x]
9. while next-x # NIL Fo k £ % #R 3:
10. do if (degree[x] # degree[next-x]) or x i K& =& 48 'i
(sibling[next-x] # NIL and degree|[sibling[next-x]] = degree[x])
11. then prev-x < x > Cases 1 and 2
12. X <— next-x % IE 2 > Cases 1 and 2
13. else if key[x] < key[next-x] % & i)
14. then sibling[x] < sibling[next-x] > Case 3
15. BINOMIAL-LINK(next-x, x) > Case 3 .
16. else if prev-x = NIL x 8% % > Case 4 oA ‘;i,
17. then head[H] < next-x > Case 4 =478 5,
18. else sibling[prev-x] < next-x > Case 4
19. BINOMIAL-LINK(x, next-x) > Case 4
20. X < next-x > Case 4
21. next-x < sibling[x]

22. return H
18

(a) head[H,]—>(12—>(7) @
3 @6
4y

i BINOMIAL-HEAP-MERGE

X next-x
(b) head H]
® @
xiokPD Y, :
Io-$*ME, Case 3
X @Z:E ng H
X next-x
® @ 6 @
xiok% - £8Y | @
NS | coe2

19

20

(d) head H

XxFokE4D Y
fo- A4 E,

x B K

(e) head| H] ‘)%
(8

XxFIokR4D Y
Jo-$ A48 3’.
’X@éd\

() head H]

xfokd 28X
22 Ei®

prev-x X next-x

@—0—0 15

i @ & @
4y
Case 4

prev-x
12

18)

Case 1

21

prev-x b ¢ next-x sibling| next-x] % %0 k & % 4B ;&:

R

by b
prev-x X next-x
@ D
Case 1_l
by b
prev-x X next-x sibling| next-x]
® @ O——>a@—> -
A B, B, ABk xIokg, -0 E
3R EP
prev-x X next-x

) b © d

prev-x next-x sibling] next-x]

K 7?\ ; \ ; \ xFoke Y

B o-$ 72,
< = <
key[x] < key[nex{ x| x ézf e
prev-x X next-x
a >(b
= b
By
B+
prev-x ¥ next-x sibling] next-x]
o : ﬁ 7;\\ K B
K XxFIokgiY
Bk B]{ B} &
key(a] > keylnext-4 kA3
eyl x ey| next-x N
x §% &
prev-x
a

22

Insert & Extract-Min

» BINOMIAL-HEAP-INSERT(H, x):

'3 - 4@ node By h H'
» Running time = O(lgn). © %431 Q% - 4@ node BY heap

® 43 H° 30 H union
BINOMIAL-HEAP-INSERT(H, X)

1. make a one-node binomial heap H' containing x
2. H <— BINOMIAL-HEAP-UNION(H, H')

» BINOMIAL-HEAP-EXTRACT-MIN(H): 3% & o+, it 43 70 3% B&%
» Running time = O(lgn).

BINOMIAL-HEAP-EXTRACT-MIN(H)
1. find the root x with the minimum key in the root list of H, % %,j\' /7;%’4
and remove x from the root list of H
H' <~ MAKE-BINOMIAL-HEAP()
reverse the order of the linked list of x's children,
and set head[H’] to point to the head of the resulting Iist] R#E
: H <— BINOMIAL-HEAP-UNION(H, H') 5
5. return x

f§ §§ (c) head H|

STH @ headH

24

Decrease-Key & Delete

» BINOMIAL-HEAP-DECREASE-KEY(H, x, k):
» Running time = O(depth of x) = O(lgn).

BINOMIAL-HEAP-DECREASE-KEY(H, X, k)
if k > key[x]
then error "new key is greater than current key”
key[x] < k
y < X . .
z < ply] R ER L, 1ty T ¥
while z # NIL and key|[y] < key|[z]

d h k k
o ochanee YW kevlel) - BiNOMIAL-HEAP-DELETE(H):

z < ply] » Running time = O(lgn).

O 0 N UL kEWDNRE

BINOMIAL-HEAP-DELETE(H, x)
1. BINOMIAL-HEAP-DECREASE-KEY(H, X, -o°)
2. BINOMIAL-HEAP-EXTRACT-MIN(H)

OHIxTRB A
® delete § I~

26

head| H)

25

12

37) 19
4

