
AlgorithmsChapter 17Amortized AnalysisAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Aggregate analysis
 The accounting method
 The potential method
 Dynamic tables

2

Amortized analysis
 Analyze a sequence of operations on a data structure.

 Goal: Show that although some individual operations may be
expensive, on average the cost per operation is small.
 Average in this context does not mean that we’re averaging over a

distribution of inputs.

 No probability is involved.

 We’re talking about average cost in the worst case.

 We show that for all n, a sequence of n operations takes
worst-case time T(n) in total.

3

Example 1: Stack operations
 Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S,k).

 PUSH(S, x): push object x onto stack S.
 Each runs in O(1) time.
 A sequence of n PUSH operations takes O(n) time.

 POP(S): pop the top of stack S and returns the popped object.
 Each runs in O(1) time.
 A sequence of n POP operations takes O(n) time.



4

MULTIPOP(S,k)
1. while not STACK-EMPTY(S) and k > 0
2. POP(S)
3. k ← k−1

Running time analysis1/2
 Running time of MULTIPOP(S,k):
 Let each PUSH/POP cost O(1).
 The number of iterations of while loop is min(s, k), where

s = number of objects on stack.
 Therefore, total cost = min(s, k).

 The running time of a sequence of n PUSH, POP, MULTIPOP
operations?

 Analysis(I):
 Worst-case cost of MULTIPOP is O(n).
 Have n operations.
 Therefore, worst-case cost of sequence is O(n2).

5

Running time analysis2/2
 Analysis(II):
 Each object can be popped only once per time that it’s pushed.
 At most n objects are pushed into S.
 Have ≤ n PUSHes ⇒ ≤ n POPs, including those in MULTIPOP.
 Therefore, total cost = O(n).
 Average cost of an operation = O(1).

 Emphasize again, no probabilistic reasoning was involved.
 Showed worst-case O(n) cost for sequence.
 Therefore, O(1) per operation on average.

6

Example 2: Incrementing a binary counter
 k-bit binary counter A[0 . . k − 1] of bits
 A[0] is the least significant bit.
 A[k − 1] is the most significant bit.
 Value of counter is .

 Initially, counter value is 0.

 To add 1 (modulo 2k), we use the
following procedure.

7

INCREMENT(A)
1. i ← 0
2. while i < k and A[i] = 1
3. A[i] ← 0
4. i ← i +1
5. if i < k
6. then A[i] ← 1

i
k

i
iA 2][

1

0
⋅

−

=

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0

0
1
3
4
7
8

10
11
15
16
18
19
22
23
25
26
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Counter
value

Total
cost

Running time analysis
 The running time of a sequence of n INCREMENT operations ?

 Analysis(I) :
 A single execution of INCREMENT takes time O(k) in the worst case.
 Have n operations.
 Therefore, worst-case cost of sequence is O(nK).
 Average cost of an operation = O(k).

 Analysis(II):
 A[0] flips every time, A[1] flips only every other time, A[2] flips only

every fourth time, and so on.
 Total number of flips is T(n) = n + n/2 + n/4 + …

≤ 2n
 Average cost of an operation = O(1).

8

Outline
 Aggregate analysis
 The accounting method
 The potential method
 Dynamic tables

9

The accounting method1/2
 Assign different charges to different operations.
 Some are charged more than actual cost.
 Some are charged less.

 The amount we charge an operation is called its amortized cost.
 When amorƟzed cost > actual cost, store (amorƟzed cost −

actual cost) on specific objects in the data structure as credit.
 Use credit later to pay for operations whose

actual cost > amortized cost.
 Differs from aggregate analysis:
 In the accounting method, different operations can have different

costs.
 In aggregate analysis, all operations have same cost.

10

The accounting method2/2
 Need credit to never go negative.
 Otherwise, have a sequence of operations for which the amortized

cost is not an upper bound on actual cost.
 Amortized cost would tell us nothing.

 Let ci = actual cost of ith operation,
= amortized cost of ith operation.

 Then require for all sequences of n operations.

 Total credit stored in the data structure = .

11

iĉ


==

≥
n

i
i

n

i
i cc

11

ˆ


==

−
n

i
i

n

i
i cc

11

ˆ

Example 1: Stack operations
 Intuition: When pushing an object, pay 2.
 $1 pays for the PUSH.
 $1 is prepayment for it being popped by either POP or MULTIPOP.
 Since each object has $1, which is credit, the credit ≥ 0.
 Therefore, total amortized cost ≤ 2n, is an upper bound on total

actual cost.
 Average cost of an operation = O(1).

12

operation actual cost amortized cost
PUSH 1 2
POP 1 0
MULTIPOP min(k, s) 0

Example 2: Incrementing a binary counter
 Charge $2 to set a bit to 1.
 $1 pays for setting a bit to 1.
 $1 is prepayment for flipping it back to 0.
 Have $1 of credit for every 1 in the counter.
 Therefore, credit ≥ 0.

 Amortized cost of INCREMENT:
 Cost of resetting bits to 0 is paid by credit.
 At most 1 bit is set to 1.
 Therefore, amortized cost ≤ $2.
 For n operations, amortized cost = O(n).
 Average cost of an operation = O(1).

13

Outline
 Aggregate analysis
 The accounting method
 The potential method
 Dynamic tables

14

The Potential method1/2
 Like the accounting method, but think of the credit as potential

stored with the entire data structure.
 Can release potential to pay for future operations.
 Most flexible of the amortized analysis methods.

 Let Di = data structure after ith operation,
D0 = initial data structure,
ci = actual cost of ith operation,

= amortized cost of ith operation.

 Potential function Φ : Di → R
 Φ(Di) is the potential associated with data structure Di.

15

iĉ

)()(ˆ 1−Φ−Φ+= iiii DDcc

increase in potential due to ith operation

The Potential method2/2


 If we require that Φ(Di) ≥ Φ(D0) for all i, then the amortized cost
is always an upper bound on actual cost.

 In practice: Φ(D0) = 0, Φ(Di) ≥ 0 for all i.

16

).()(

))()((

ˆcost amortized Total

0
1

1
1

1

DDc

DDc

c

n

n

i
i

ii

n

i
i

n

i
i

Φ−Φ+=

Φ−Φ+=

=







=

−
=

=

Example 1: Stack operations
 Φ = # of objects in stack.

 D0 = empty stack ⇒ Φ(D0) = 0.

 Since # of objects in stack ≥ 0, Φ(Di) ≥ 0 = Φ(D0) for all i.

 Therefore, amortized cost of a sequence of n operations

= =O(n).

17

operation actual cost Φ(Di) − Φ(Di -1) amortized cost
PUSH 1 (s + 1) − s = 1 1 + 1 = 2
POP 1 (s − 1) − s = −1 1 − 1 = 0
MULTIPOP k’= min(k, s) (s − k’) − s = −k’ k’ − k’ = 0
s = # of objects initially.


=

n

i
ic

1

ˆ

Example 2: Incrementing a binary counter1/2
 Φ = bi = # of 1’s after ith INCREMENT.

 D0 = all bits are set to zero ⇒ Φ(D0) = 0.

 Suppose ith operation resets ti bits to 0.

 ci ≤ ti + 1. (resets ti bits, sets at most one bit to 1)

 If bi = 0, the ith operation reset all k bits and didn’t set one, so
bi−1 = ti = k ⇒ bi = bi−1 − ti.

 If bi > 0, the ith operation reset ti bits, set one, so bi = bi−1 − ti + 1.

 In either case, bi ≤ bi−1 − ti + 1.

18

Example 2: Incrementing a binary counter2/2
 Therefore,

 The amortized cost is therefore

 Thus, amortized cost of n operations = = O(n).

19

1 1

1 1

() ()
(1)

 1 .

i i i i

i i i

i

D D b b
b t b

t

− −

− −

Φ −Φ = −
≤ − + −
= −

.2
)1()1(

)()(ˆ 1

=
−++≤

Φ−Φ+= −

ii

iiii

tt
DDcc


=

n

i
ic

1

ˆ

Outline
 Aggregate analysis
 The accounting method
 The potential method
 Dynamic tables

20

Dynamic tables1/2
 Scenario
 Have a table ─ maybe a hash table.
 Don’t know in advance how many objects will be stored in it.
 When it fills, must reallocate with a larger size, copying all objects

into the new, larger table.
 When it gets sufficiently small, might want to reallocate with a

smaller size.
 Initially, T is a table of size 0.
 Perform a sequence of n operations on T, each of which is either

Insert or Delete.
 Goals
 O(1) amortized time per operation.
 Unused space always ≤ constant fraction of allocated space.

21

Dynamic tables2/2
 Load factor α(T)
 α(T) = num[T]/size[T]

 num[T] = # items stored, size[T] = allocated size.
 If size[T] = 0, then num[T] = 0. Define α = 1.
 Never allow α > 1.
 Keep α > a constant fraction.

22

Table expansion

 When the table becomes full, double its size and reinsert all
existing items.

 Each time we actually insert an item into the table, it’s an
elementary insertion.

23

TABLE-INSERT (T, x)
1. if size[T] = 0
2. then allocate table[T] with 1 slot
3. size[T] ← 1
4. if num[T] = size[T]
5. then allocate new-table with 2 · size[T] slots
6. insert all items in table[T] into new-table
7. free table[T]
8. table[T] ← new-table
9. size[T] ← 2 · size[T]
10. insert x into table[T]
11. num[T] ← num[T] + 1

Notice : If only
insertions are
performed, the
load factor of a
table is always
at least 1/2.

Running time analysis
 The running time of a sequence of n TABLE-INSERT operations on

an initially empty table ?
 Analysis(I) :
 ci = actual cost of ith operation.
 If not full, ci = 1.
 If full, have i − 1 items in the table at the start of the ith operation.

Have to copy all i − 1 exisƟng items, then insert ith item ⇒ ci = i .
 n operations ⇒ ci = O(n) ⇒ O(n2) time for n operations.

24

 Analysis(II):
 Expand only when i − 1 is an exact power of 2.



 Therefore, aggregate analysis says amortized cost per operation = 3.

 

 

n
nn

n

nc
n

n

j

j
n

i
i

3
2

12
1 2

2 cost Totol

1 lg

 lg

01

=
+<

−
−+=

+≤=

+
==


Aggregate analysis

25



 −

=
. otherwise 1

2, ofpower exact is 1 if

ii
ci

Accounting method
 Charge $3 per insertion of x.
 $1 pays for x’s insertion.
 $1 pays for x to be moved in the future.
 $1 pays for some other item to be moved.

 Suppose that the size of the table is m immediately after an
expansion.
 Assume that the expansion used up all the credit, so that there’s no

credit stored after the expansion.
 Will expand again after another m insertions.
 Each insertion will put $1 on one of the m items that were in the

table just after expansion and will put $1 on the item inserted.
 Have $2m of credit by next expansion, when there are 2m items to

move. Enough to pay for the expansion, with no credit left over!
26

Potential method1/3
 Φ(T) = 2 · num[T] − size[T]
 Initially, num[T] = size[T] = 0 ⇒ Φ(T) = 0.
 Just after expansion, size[T] = 2 · num[T] ⇒ Φ(T) = 0.
 Just before expansion, size[T] = num[T] ⇒ Φ(T) = num[T] ⇒ have enough potential to pay for moving all items.
 Always have Φ(T) ≥ 0.

num[T] ≥ 1/2· size[T]⇒ 2 · num[T] ≥ size[T] ⇒ Φ(T) ≥ 0.

 Amortized cost of ith operation:
numi = num[T] after ith operation,
sizei = size[T] after ith operation ,

Φi = Φ after ith operation.
27

 If no expansion:

 If expansion:

.1
,1

 ,2

 1

 1 1

1

ii-i

ii-i

i-i

numnumc
numnumsize
 sizesize

=+=
−==

⋅=

−

() ()
()() () ()()

()

1

 1 1

ˆ Φ Φ
 2 2

 2 2 1 2 1 1

 2 1
 3 .

i i i i-

i i i i i

i i i i i

i i

c c
num num size num size

num num num num num

num num

− −

= + −
= + ⋅ − − ⋅ −

= + ⋅ − − − − − −

= + − −
=

.1
 ,1

 ,

1

1

=
+=

=

i

i-i

i-i

c
numnum

 sizesize

Potential method2/3

28

() ()
() ()()

. 3
2 1

 12 2 1
 2 2 1

 Φ Φ ˆ

1 1

1

=
+=

−−−−⋅+=
−⋅−−⋅+=

−+=

−−

iiii

iiii

i-iii

sizenumsizenum
sizenumsizenum

cc

Potential method3/3

 The above Figure plots the values of numi, sizei, and Φi against i.
 Notice how the potential builds to pay for the expansion of the

table.

29

32

24

16

8

0
0 8 16 24 32

isize inum

iΦ

i

Expansion and contraction1/2
 When α drops too low, contract the table.
 Allocate a new, smaller one.
 Copy all items.

 Preserve two properties
 load factor α bounded below by a positive constant, and
 amortized cost per operation bounded above by a constant.

 Obvious strategy
 Double size when inserting into a full table.
 Halve size when deletion would make table less than half full.
 Then always have 1/2 ≤ α ≤ 1.

30

Expansion and contraction2/2
 Consider the following scenario
 The first n/2 operations are insertions,
 For the second n/2 operations, we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,…

 The cost of each expansion and contraction is Θ(n).
 The total cost of the n operations is Θ(n2).

 Simple solution:
 Double size when inserting into a full table.
 Halve size when deleting from a 1/4 full table.
 After either expansion or contraction, α = 1/2.
 Always have 1/4 ≤ α ≤ 1.

31

double double doublehalve halve

Some properties1/3
 Observation 1:
 Need to delete half the items before contraction.
 Need to double number of items before expansion.

 Let

 T empty ⇒ Φ = 0.
 α ≥ 1/2 ⇒ num ≥ 1/2 · size ⇒ 2 · num ≥ size ⇒ Φ ≥ 0.
 α < 1/2 ⇒ num < 1/2 · size ⇒ Φ ≥ 0.

32





<−
≥−⋅

=
.2/1 if][2/][
,2/1 if][][2

)(Φ
α
α

TnumTsize
TsizeTnum

T

Some properties2/3

 The potential is never negative. Thus, the total amortized cost of
a sequence of operations with respect to Φ is an upper bound
on the actual cost of the sequence.

33

32

24

16

8

0
0 8 16 24 32 40 48

i

isize

inum

iΦ

Some properties3/3
 Observation 2:
 α = 1/2 ⇒ Φ = 2 · num − 2 · num = 0.
 α = 1 ⇒ Φ = 2 · num − num = num.
 α = 1/4 ⇒ Φ = size/2 − num = 4 · num/2 − num = num.
 Therefore, when we double or halve, have enough potential to pay

for moving all num items.

 Let ci = actual cost of ith operation,
= amortized cost of ith operation,

numi = the number of items after the ith operation,
sizei = the size of the table after the ith operation,

αi = the load factor of the table after the ith operation,
Φi = the potential after the ith operation.

34

iĉ

 Case 1: αi−1 ≥ 1/2
 The same analysis as before.
 The amortized cost .

 Case 2: αi−1 < 1/2 and αi < 1/2 (no expansion)

() ()
() ()()

. 0
 12 / 2 / 1

 2 / 2 / 1
 Φ Φ ˆ

1 1

1

=
−−−−+=

−−−+=
++=

−−

iiii

iiii

i-iii

numsizenumsize
numsizenumsize

cc

Analysis: insert operation1/2

35

3ˆ =ic

Analysis: insert operation2/2
 Case 3: αi−1 < 1/2 and αi ≥ 1/2 (no expansion)

 Therefore, amortized cost of insert is at most 3.

36

() ()
()() ()

 1 1

 1 1 1 1

 1 1

1 1 1

 1

ˆ 1 2 / 2

 1 2 1 / 2

3 3 3
2

3 3 3
2

3 3
2 2

i i i i i

i i i i

i i

i i i

i

c num size size num

num size size num

num size

size size

size

α

− −

− − − −

− −

− − −

−

= + ⋅ − − −

= + + − − −

= ⋅ − ⋅ +

= ⋅ − ⋅ +

< ⋅ − 1 3

 3 .

isize −⋅ +

=

Analysis: delete operation1/3
 Case 1: αi−1 < 1/2
 This implies αi < 1/2.
 If no contraction:

 If contraction:

37

() ()
() ()()

. 2
 12 / 2 / 1

 2 / 2 / 1 ˆ

1 1

=
=
=

+−−−+
−−−+ −−

iiii

iiiii
numsizenumsize
numsizenumsizec

() () ()

[]
() ()() () ()()

. 1
 122 1 1

14 2 /
deletemove

2 / 2 / 1 ˆ

 1 1

1 1

=
=

=

+−+⋅−−+++
+===

+
−−−++ −−

iiiii

ii-i-i

iiiiii

numnumnumnumnum
 num num / sizesize

numsizenumsizenumc

 Case 2: αi−1 ≥ 1/2 (No contraction happens)
 Case 2a: αi ≥ 1/2:

 Case 2b: αi < 1/2:
Since αi−1 ≥ 1/2, we have
numi = numi− 1 − 1 ≥ ½ · sizei− 1 − 1 = ½ · sizei − 1.
Thus,

. 2

11 2
1 3 1 2

3 1

 3 1 2
3 1

) 1 (2) 2 / (1
)1 1 (2) 2 / (1 ˆ

=







 −−⋅−−⋅+−≤

⋅−−⋅+−=

−−⋅−−+=
−−−⋅−−+=

isizeisize

inumisize
isizeinuminumisize
isizeinuminumisizeic

() ()
() ()
. 1

 22 2 1
 2 2 1 ˆ

1 1

−=
−+⋅−−⋅+=

−⋅−−⋅+= −−

iiii

iiiii

sizenumsizenum
sizenumsizenumc

Analysis: delete operation1/2

38

Summary
 Therefore, amortized cost of delete is at most 2.

 The amortized cost of each operation is bounded above by
a constant .

 The actual time for any sequence of n operations on a
dynamic table is O(n).

39

40

a b c d e f g h

a b c d e f g

a b c d e f

a b c d e

a b c d

$1 $1 $1 $1

$1 $1 $1

$1 $1

$1

$1

C = 0

C = 2 Pay $3(case 1a)

C = 4 Pay $3

C = 6 Pay $3

C = 8 Pay $3

C = 2 Pay $3(case 1b)

2) / 1 (Only Insertion ≥α

a b c d e f g h i
$1

$1 $1 $1 $1

$1 $1 $1

$1 $1

$1

41

a b c d e f g h

a b c d e f g

a b c d e f

a b c d e

a b c d

a b c

$1 $1 $1 $1

$1 $1 $1

$1 $1

$1

$1

C = 0

C = 1 Pay $2(case 1a)

C = 2 Pay $2

C = 3 Pay $2

C = 4 Pay $2

C = 1 Pay $1(case 1b)

2) / 1 (Only Delection ≤α

