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Amortized analysis
 Analyze a sequence of operations on a data structure. 

 Goal: Show that although some individual operations may be 
expensive, on average the cost per operation is small.
 Average in this context does not mean that we’re averaging over a 

distribution of inputs. 

 No probability is involved. 

 We’re talking about average cost in the worst case.

 We show that for all n, a sequence of n operations takes 
worst-case time T(n) in total.
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Example 1: Stack operations
 Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S,k).

 PUSH(S, x): push object x onto stack S.
 Each runs in O(1) time.
 A sequence of n PUSH operations takes O(n) time.

 POP(S): pop the top of stack S and returns the popped object.
 Each runs in O(1) time.
 A sequence of n POP operations takes O(n) time.


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MULTIPOP(S,k)
1. while not STACK-EMPTY(S) and k > 0
2. POP(S)
3. k ← k−1



Running time analysis1/2
 Running time of MULTIPOP(S,k):
 Let each PUSH/POP cost O(1).
 The number of iterations of while loop is min(s, k), where 

s = number of objects on stack.
 Therefore, total cost = min(s, k).

 The running time of a sequence of n PUSH, POP, MULTIPOP
operations?

 Analysis(I): 
 Worst-case cost of MULTIPOP is O(n).
 Have n operations.
 Therefore, worst-case cost of sequence is O(n2).
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Running time analysis2/2
 Analysis(II):
 Each object can be popped only once per time that it’s pushed.
 At most n objects are pushed into S.
 Have ≤ n PUSHes ⇒ ≤ n POPs, including those in MULTIPOP.
 Therefore, total cost = O(n).
 Average cost of an operation = O(1).

 Emphasize again, no probabilistic reasoning was involved.
 Showed worst-case O(n) cost for sequence.
 Therefore, O(1) per operation on average.
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Example 2: Incrementing a binary counter
 k-bit binary counter A[0 . . k − 1] of bits
 A[0] is the least significant bit.
 A[k − 1] is the most significant bit.
 Value of counter is               .

 Initially, counter value is 0.

 To add 1 (modulo 2k), we use the 
following procedure. 
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INCREMENT(A)
1. i ← 0
2. while i < k and A[i] = 1 
3. A[i] ← 0
4. i ← i +1
5. if i < k
6. then A[i] ← 1
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Running time analysis
 The running time of a sequence of n INCREMENT operations ?

 Analysis(I) :
 A single execution of INCREMENT takes time O(k) in the worst case.
 Have n operations.
 Therefore, worst-case cost of sequence is O(nK).
 Average cost of an operation = O(k).

 Analysis(II):
 A[0] flips every time, A[1] flips only every other time, A[2] flips only 

every fourth time, and so on. 
 Total number of flips is T(n) = n + n/2 + n/4 + …

≤ 2n
 Average cost of an operation = O(1).
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The accounting method1/2
 Assign different charges to different operations. 
 Some are charged more than actual cost.
 Some are charged less.

 The amount we charge an operation is called its amortized cost.
 When amorƟzed cost > actual cost, store (amorƟzed cost − 

actual cost) on specific objects in the data structure as credit.
 Use credit later to pay for operations whose 

actual cost > amortized cost. 
 Differs from aggregate analysis:
 In the accounting method, different operations can have different 

costs.
 In aggregate analysis, all operations have same cost.
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The accounting method2/2
 Need credit to never go negative. 
 Otherwise, have a sequence of operations for which the amortized 

cost is not an upper bound on actual cost.
 Amortized cost would tell us nothing.

 Let ci = actual cost of ith operation,
= amortized cost of ith operation.

 Then require for all sequences of n operations.

 Total credit stored in the data structure =                    .
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Example 1: Stack operations
 Intuition: When pushing an object, pay 2.
 $1 pays for the PUSH.
 $1 is prepayment for it being popped by either POP or MULTIPOP.
 Since each object has $1, which is credit, the credit ≥ 0.
 Therefore, total amortized cost ≤ 2n, is an upper bound on total 

actual cost.
 Average cost of an operation = O(1).
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operation actual cost amortized cost
PUSH 1 2
POP 1 0
MULTIPOP min(k, s) 0



Example 2: Incrementing a binary counter
 Charge $2 to set a bit to 1.
 $1 pays for setting a bit to 1.
 $1 is prepayment for flipping it back to 0.
 Have $1 of credit for every 1 in the counter.
 Therefore, credit ≥ 0.

 Amortized cost of INCREMENT:
 Cost of resetting bits to 0 is paid by credit.
 At most 1 bit is set to 1.
 Therefore, amortized cost ≤ $2.
 For n operations, amortized cost = O(n).
 Average cost of an operation = O(1).
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The Potential method1/2
 Like the accounting method, but think of the credit as potential

stored with the entire data structure. 
 Can release potential to pay for future operations.
 Most flexible of the amortized analysis methods.

 Let Di = data structure after ith operation,
D0 = initial data structure,
ci = actual cost of ith operation,

= amortized cost of ith operation.

 Potential function Φ : Di → R
 Φ(Di) is the potential associated with data structure Di.
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The Potential method2/2


 If we require that Φ(Di) ≥ Φ(D0) for all i, then the amortized cost 
is always an upper bound on actual cost.

 In practice: Φ(D0) = 0, Φ(Di) ≥ 0 for all i.
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Example 1: Stack operations
 Φ = # of objects in stack.

 D0 = empty stack ⇒ Φ(D0) = 0.

 Since # of objects in stack ≥ 0, Φ(Di) ≥ 0 = Φ(D0) for all i.

 Therefore, amortized cost of a sequence of n operations 

=         =O(n).
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operation actual cost Φ(Di) − Φ(Di -1) amortized cost
PUSH 1 (s + 1) − s = 1 1 + 1 = 2
POP 1 (s − 1) − s = −1 1 − 1 = 0
MULTIPOP k’= min(k, s) (s − k’) − s = −k’ k’ − k’ = 0
s = # of objects initially.
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Example 2: Incrementing a binary counter1/2
 Φ = bi = # of 1’s after ith INCREMENT.

 D0 = all bits are set to zero ⇒ Φ(D0) = 0.

 Suppose ith operation resets ti bits to 0.

 ci ≤ ti + 1. (resets ti bits, sets at most one bit to 1)

 If bi = 0, the ith operation reset all k bits and didn’t set one, so 
bi−1 = ti = k ⇒ bi = bi−1 − ti.

 If bi > 0, the ith operation reset ti bits, set one, so bi = bi−1 − ti + 1.

 In either case, bi ≤ bi−1 − ti + 1.
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Example 2: Incrementing a binary counter2/2
 Therefore,

 The amortized cost is therefore 

 Thus, amortized cost of n operations =          = O(n).
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Dynamic tables1/2
 Scenario
 Have a table ─ maybe a hash table.
 Don’t know in advance how many objects will be stored in it.
 When it fills, must reallocate with a larger size, copying all objects 

into the new, larger table.
 When it gets sufficiently small, might want to reallocate with a 

smaller size.
 Initially, T is a table of size 0.
 Perform a sequence of n operations on T, each of which is either 

Insert or Delete.
 Goals
 O(1) amortized time per operation.
 Unused space always ≤ constant fraction of allocated space.
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Dynamic tables2/2
 Load factor α(T)
 α(T) = num[T]/size[T]

 num[T] = # items stored, size[T] = allocated size.
 If size[T] = 0, then num[T] = 0. Define α = 1. 
 Never allow α > 1.
 Keep α > a constant fraction.

22



Table expansion 

 When the table becomes full, double its size and reinsert all 
existing items.

 Each time we actually insert an item into the table, it’s an 
elementary insertion.
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TABLE-INSERT (T, x)
1. if size[T] = 0
2. then  allocate table[T] with 1 slot
3. size[T] ← 1
4. if num[T] = size[T]
5. then allocate new-table with 2 · size[T] slots
6. insert all items in table[T] into new-table
7. free table[T]
8. table[T] ← new-table
9. size[T] ← 2 · size[T]
10. insert x into table[T]
11. num[T] ← num[T] + 1

Notice : If only 
insertions are 
performed, the 
load factor of a 
table is always 
at least 1/2.



Running time analysis
 The running time of a sequence of n TABLE-INSERT operations on 

an initially empty table ?
 Analysis(I) :
 ci = actual cost of ith operation.
 If not full, ci = 1.
 If full, have i − 1 items in the table at the start of the ith operation. 

Have to copy all i − 1 exisƟng items, then insert ith item ⇒ ci = i . 
 n operations ⇒ ci = O(n) ⇒ O(n2) time for n operations.
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 Analysis(II):
 Expand only when i − 1 is an exact power of 2.



 Therefore, aggregate analysis says amortized cost per operation = 3.  

 

 

n
nn

n

nc
n

n

j

j
n

i
i

3   
2      

12
1  2      

2           cost     Totol

 
 

1   lg

 lg

01

=
+<

−
−+=

+≤=

+
==


Aggregate analysis

25



 −

=
. otherwise      1

2,  ofpower  exact    is  1  if      
  

ii
ci



Accounting method
 Charge $3 per insertion of x.
 $1 pays for x’s insertion.
 $1 pays for x to be moved in the future.
 $1 pays for some other item to be moved.

 Suppose that the size of the table is m immediately after an 
expansion.
 Assume that the expansion used up all the credit, so that there’s no 

credit stored after the expansion.
 Will expand again after another m insertions.
 Each insertion will put $1 on one of the m items that were in the 

table just after expansion and will put $1 on the item inserted.
 Have $2m of credit by next expansion, when there are 2m items to 

move. Enough to pay for the expansion, with no credit left over!
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Potential method1/3
 Φ(T) = 2 · num[T] − size[T]
 Initially, num[T] = size[T] = 0 ⇒ Φ(T) = 0.
 Just after expansion, size[T] = 2 · num[T] ⇒ Φ(T) = 0.
 Just before expansion, size[T] = num[T] ⇒ Φ(T) = num[T] ⇒ have enough potential to pay for moving all items.
 Always have Φ(T) ≥ 0. 

num[T] ≥ 1/2· size[T]⇒ 2 · num[T] ≥ size[T] ⇒ Φ(T) ≥ 0.

 Amortized cost of ith operation:
numi = num[T] after ith operation,
sizei = size[T] after ith operation ,

Φi = Φ after ith operation.
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 If no expansion: 

 If expansion:
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Potential method3/3

 The above Figure plots the values of numi, sizei, and Φi against i. 
 Notice how the potential builds to pay for the expansion of the 

table.
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Expansion and contraction1/2
 When α drops too low, contract the table.
 Allocate a new, smaller one.
 Copy all items. 

 Preserve two properties
 load factor α bounded below by a positive constant, and 
 amortized cost per operation bounded above by a constant.

 Obvious strategy
 Double size when inserting into a full table.
 Halve size when deletion would make table less than half full.
 Then always have 1/2 ≤ α ≤ 1.
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Expansion and contraction2/2
 Consider the following scenario
 The first n/2 operations are insertions, 
 For the second n/2 operations, we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,…

 The cost of each expansion and contraction is Θ(n).
 The total cost of the n operations is Θ(n2).

 Simple solution:
 Double size when inserting into a full table.
 Halve size when deleting from a 1/4 full table.
 After either expansion or contraction, α = 1/2.
 Always have 1/4 ≤ α ≤ 1.
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Some properties1/3
 Observation 1:
 Need to delete half the items before contraction.
 Need to double number of items before expansion.

 Let

 T empty ⇒ Φ = 0.
 α ≥ 1/2 ⇒ num ≥ 1/2 · size ⇒ 2 · num ≥ size ⇒ Φ ≥ 0. 
 α < 1/2 ⇒ num < 1/2 · size ⇒ Φ ≥ 0.
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Some properties2/3

 The potential is never negative. Thus, the total amortized cost of 
a sequence of operations with respect to Φ is an upper bound 
on the actual cost of the sequence.
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Some properties3/3
 Observation 2:
 α = 1/2   ⇒ Φ = 2 · num − 2 · num = 0.
 α = 1       ⇒ Φ = 2 · num − num = num.
 α = 1/4   ⇒ Φ = size/2 − num = 4 · num/2 − num = num.
 Therefore, when we double or halve, have enough potential to pay 

for moving all num items.

 Let ci = actual cost of ith operation,
= amortized cost of ith operation,

numi = the number of items after the ith operation,
sizei = the size of the table after the ith operation,

αi = the load factor of the table after the ith operation,
Φi = the potential after the ith operation.
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 Case 1: αi−1 ≥ 1/2
 The same analysis as before.
 The amortized cost . 

 Case 2: αi−1 < 1/2  and αi < 1/2 (no expansion) 
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Analysis: insert operation1/2
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Analysis: insert operation2/2
 Case 3: αi−1 < 1/2  and αi ≥ 1/2 (no expansion)

 Therefore, amortized cost of insert is at most 3. 
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Analysis: delete operation1/3
 Case 1: αi−1 < 1/2 
 This implies αi < 1/2.
 If no contraction:

 If contraction:
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 Case 2: αi−1 ≥ 1/2 (No contraction happens)
 Case 2a: αi ≥ 1/2:

 Case 2b: αi < 1/2:
Since αi−1 ≥ 1/2, we have  
numi = numi− 1 − 1 ≥ ½ · sizei− 1 − 1 = ½ · sizei − 1.  
Thus,
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Summary
 Therefore, amortized cost of delete is at most 2.

 The amortized cost of each operation is bounded above by 
a constant .

 The actual time for any sequence of n operations on a 
dynamic table is O(n).
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C = 0

C = 2 Pay $3(case 1a)

C = 4 Pay $3

C = 6 Pay $3

C = 8 Pay $3

C = 2 Pay $3(case 1b)

2) / 1  (Only  Insertion ≥α
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C = 1 Pay $1(case 1b)
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