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Amortized analysis
 Analyze a sequence of operations on a data structure. 

 Goal: Show that although some individual operations may be 
expensive, on average the cost per operation is small.
 Average in this context does not mean that we’re averaging over a 

distribution of inputs. 

 No probability is involved. 

 We’re talking about average cost in the worst case.

 We show that for all n, a sequence of n operations takes 
worst-case time T(n) in total.
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Example 1: Stack operations
 Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S,k).

 PUSH(S, x): push object x onto stack S.
 Each runs in O(1) time.
 A sequence of n PUSH operations takes O(n) time.

 POP(S): pop the top of stack S and returns the popped object.
 Each runs in O(1) time.
 A sequence of n POP operations takes O(n) time.
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MULTIPOP(S,k)
1. while not STACK-EMPTY(S) and k > 0
2. POP(S)
3. k ← k−1



Running time analysis1/2
 Running time of MULTIPOP(S,k):
 Let each PUSH/POP cost O(1).
 The number of iterations of while loop is min(s, k), where 

s = number of objects on stack.
 Therefore, total cost = min(s, k).

 The running time of a sequence of n PUSH, POP, MULTIPOP
operations?

 Analysis(I): 
 Worst-case cost of MULTIPOP is O(n).
 Have n operations.
 Therefore, worst-case cost of sequence is O(n2).
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Running time analysis2/2
 Analysis(II):
 Each object can be popped only once per time that it’s pushed.
 At most n objects are pushed into S.
 Have ≤ n PUSHes ⇒ ≤ n POPs, including those in MULTIPOP.
 Therefore, total cost = O(n).
 Average cost of an operation = O(1).

 Emphasize again, no probabilistic reasoning was involved.
 Showed worst-case O(n) cost for sequence.
 Therefore, O(1) per operation on average.
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Example 2: Incrementing a binary counter
 k-bit binary counter A[0 . . k − 1] of bits
 A[0] is the least significant bit.
 A[k − 1] is the most significant bit.
 Value of counter is               .

 Initially, counter value is 0.

 To add 1 (modulo 2k), we use the 
following procedure. 
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INCREMENT(A)
1. i ← 0
2. while i < k and A[i] = 1 
3. A[i] ← 0
4. i ← i +1
5. if i < k
6. then A[i] ← 1
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Running time analysis
 The running time of a sequence of n INCREMENT operations ?

 Analysis(I) :
 A single execution of INCREMENT takes time O(k) in the worst case.
 Have n operations.
 Therefore, worst-case cost of sequence is O(nK).
 Average cost of an operation = O(k).

 Analysis(II):
 A[0] flips every time, A[1] flips only every other time, A[2] flips only 

every fourth time, and so on. 
 Total number of flips is T(n) = n + n/2 + n/4 + …

≤ 2n
 Average cost of an operation = O(1).
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The accounting method1/2
 Assign different charges to different operations. 
 Some are charged more than actual cost.
 Some are charged less.

 The amount we charge an operation is called its amortized cost.
 When amorƟzed cost > actual cost, store (amorƟzed cost − 

actual cost) on specific objects in the data structure as credit.
 Use credit later to pay for operations whose 

actual cost > amortized cost. 
 Differs from aggregate analysis:
 In the accounting method, different operations can have different 

costs.
 In aggregate analysis, all operations have same cost.
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The accounting method2/2
 Need credit to never go negative. 
 Otherwise, have a sequence of operations for which the amortized 

cost is not an upper bound on actual cost.
 Amortized cost would tell us nothing.

 Let ci = actual cost of ith operation,
= amortized cost of ith operation.

 Then require for all sequences of n operations.

 Total credit stored in the data structure =                    .
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Example 1: Stack operations
 Intuition: When pushing an object, pay 2.
 $1 pays for the PUSH.
 $1 is prepayment for it being popped by either POP or MULTIPOP.
 Since each object has $1, which is credit, the credit ≥ 0.
 Therefore, total amortized cost ≤ 2n, is an upper bound on total 

actual cost.
 Average cost of an operation = O(1).
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operation actual cost amortized cost
PUSH 1 2
POP 1 0
MULTIPOP min(k, s) 0



Example 2: Incrementing a binary counter
 Charge $2 to set a bit to 1.
 $1 pays for setting a bit to 1.
 $1 is prepayment for flipping it back to 0.
 Have $1 of credit for every 1 in the counter.
 Therefore, credit ≥ 0.

 Amortized cost of INCREMENT:
 Cost of resetting bits to 0 is paid by credit.
 At most 1 bit is set to 1.
 Therefore, amortized cost ≤ $2.
 For n operations, amortized cost = O(n).
 Average cost of an operation = O(1).
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The Potential method1/2
 Like the accounting method, but think of the credit as potential

stored with the entire data structure. 
 Can release potential to pay for future operations.
 Most flexible of the amortized analysis methods.

 Let Di = data structure after ith operation,
D0 = initial data structure,
ci = actual cost of ith operation,

= amortized cost of ith operation.

 Potential function Φ : Di → R
 Φ(Di) is the potential associated with data structure Di.
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The Potential method2/2


 If we require that Φ(Di) ≥ Φ(D0) for all i, then the amortized cost 
is always an upper bound on actual cost.

 In practice: Φ(D0) = 0, Φ(Di) ≥ 0 for all i.
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Example 1: Stack operations
 Φ = # of objects in stack.

 D0 = empty stack ⇒ Φ(D0) = 0.

 Since # of objects in stack ≥ 0, Φ(Di) ≥ 0 = Φ(D0) for all i.

 Therefore, amortized cost of a sequence of n operations 

=         =O(n).
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operation actual cost Φ(Di) − Φ(Di -1) amortized cost
PUSH 1 (s + 1) − s = 1 1 + 1 = 2
POP 1 (s − 1) − s = −1 1 − 1 = 0
MULTIPOP k’= min(k, s) (s − k’) − s = −k’ k’ − k’ = 0
s = # of objects initially.
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Example 2: Incrementing a binary counter1/2
 Φ = bi = # of 1’s after ith INCREMENT.

 D0 = all bits are set to zero ⇒ Φ(D0) = 0.

 Suppose ith operation resets ti bits to 0.

 ci ≤ ti + 1. (resets ti bits, sets at most one bit to 1)

 If bi = 0, the ith operation reset all k bits and didn’t set one, so 
bi−1 = ti = k ⇒ bi = bi−1 − ti.

 If bi > 0, the ith operation reset ti bits, set one, so bi = bi−1 − ti + 1.

 In either case, bi ≤ bi−1 − ti + 1.
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Example 2: Incrementing a binary counter2/2
 Therefore,

 The amortized cost is therefore 

 Thus, amortized cost of n operations =          = O(n).
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Dynamic tables1/2
 Scenario
 Have a table ─ maybe a hash table.
 Don’t know in advance how many objects will be stored in it.
 When it fills, must reallocate with a larger size, copying all objects 

into the new, larger table.
 When it gets sufficiently small, might want to reallocate with a 

smaller size.
 Initially, T is a table of size 0.
 Perform a sequence of n operations on T, each of which is either 

Insert or Delete.
 Goals
 O(1) amortized time per operation.
 Unused space always ≤ constant fraction of allocated space.

21



Dynamic tables2/2
 Load factor α(T)
 α(T) = num[T]/size[T]

 num[T] = # items stored, size[T] = allocated size.
 If size[T] = 0, then num[T] = 0. Define α = 1. 
 Never allow α > 1.
 Keep α > a constant fraction.
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Table expansion 

 When the table becomes full, double its size and reinsert all 
existing items.

 Each time we actually insert an item into the table, it’s an 
elementary insertion.
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TABLE-INSERT (T, x)
1. if size[T] = 0
2. then  allocate table[T] with 1 slot
3. size[T] ← 1
4. if num[T] = size[T]
5. then allocate new-table with 2 · size[T] slots
6. insert all items in table[T] into new-table
7. free table[T]
8. table[T] ← new-table
9. size[T] ← 2 · size[T]
10. insert x into table[T]
11. num[T] ← num[T] + 1

Notice : If only 
insertions are 
performed, the 
load factor of a 
table is always 
at least 1/2.



Running time analysis
 The running time of a sequence of n TABLE-INSERT operations on 

an initially empty table ?
 Analysis(I) :
 ci = actual cost of ith operation.
 If not full, ci = 1.
 If full, have i − 1 items in the table at the start of the ith operation. 

Have to copy all i − 1 exisƟng items, then insert ith item ⇒ ci = i . 
 n operations ⇒ ci = O(n) ⇒ O(n2) time for n operations.
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 Analysis(II):
 Expand only when i − 1 is an exact power of 2.



 Therefore, aggregate analysis says amortized cost per operation = 3.  
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Accounting method
 Charge $3 per insertion of x.
 $1 pays for x’s insertion.
 $1 pays for x to be moved in the future.
 $1 pays for some other item to be moved.

 Suppose that the size of the table is m immediately after an 
expansion.
 Assume that the expansion used up all the credit, so that there’s no 

credit stored after the expansion.
 Will expand again after another m insertions.
 Each insertion will put $1 on one of the m items that were in the 

table just after expansion and will put $1 on the item inserted.
 Have $2m of credit by next expansion, when there are 2m items to 

move. Enough to pay for the expansion, with no credit left over!
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Potential method1/3
 Φ(T) = 2 · num[T] − size[T]
 Initially, num[T] = size[T] = 0 ⇒ Φ(T) = 0.
 Just after expansion, size[T] = 2 · num[T] ⇒ Φ(T) = 0.
 Just before expansion, size[T] = num[T] ⇒ Φ(T) = num[T] ⇒ have enough potential to pay for moving all items.
 Always have Φ(T) ≥ 0. 

num[T] ≥ 1/2· size[T]⇒ 2 · num[T] ≥ size[T] ⇒ Φ(T) ≥ 0.

 Amortized cost of ith operation:
numi = num[T] after ith operation,
sizei = size[T] after ith operation ,

Φi = Φ after ith operation.
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Potential method3/3

 The above Figure plots the values of numi, sizei, and Φi against i. 
 Notice how the potential builds to pay for the expansion of the 

table.
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Expansion and contraction1/2
 When α drops too low, contract the table.
 Allocate a new, smaller one.
 Copy all items. 

 Preserve two properties
 load factor α bounded below by a positive constant, and 
 amortized cost per operation bounded above by a constant.

 Obvious strategy
 Double size when inserting into a full table.
 Halve size when deletion would make table less than half full.
 Then always have 1/2 ≤ α ≤ 1.
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Expansion and contraction2/2
 Consider the following scenario
 The first n/2 operations are insertions, 
 For the second n/2 operations, we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,…

 The cost of each expansion and contraction is Θ(n).
 The total cost of the n operations is Θ(n2).

 Simple solution:
 Double size when inserting into a full table.
 Halve size when deleting from a 1/4 full table.
 After either expansion or contraction, α = 1/2.
 Always have 1/4 ≤ α ≤ 1.
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Some properties1/3
 Observation 1:
 Need to delete half the items before contraction.
 Need to double number of items before expansion.

 Let

 T empty ⇒ Φ = 0.
 α ≥ 1/2 ⇒ num ≥ 1/2 · size ⇒ 2 · num ≥ size ⇒ Φ ≥ 0. 
 α < 1/2 ⇒ num < 1/2 · size ⇒ Φ ≥ 0.
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Some properties2/3

 The potential is never negative. Thus, the total amortized cost of 
a sequence of operations with respect to Φ is an upper bound 
on the actual cost of the sequence.
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Some properties3/3
 Observation 2:
 α = 1/2   ⇒ Φ = 2 · num − 2 · num = 0.
 α = 1       ⇒ Φ = 2 · num − num = num.
 α = 1/4   ⇒ Φ = size/2 − num = 4 · num/2 − num = num.
 Therefore, when we double or halve, have enough potential to pay 

for moving all num items.

 Let ci = actual cost of ith operation,
= amortized cost of ith operation,

numi = the number of items after the ith operation,
sizei = the size of the table after the ith operation,

αi = the load factor of the table after the ith operation,
Φi = the potential after the ith operation.
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 Case 1: αi−1 ≥ 1/2
 The same analysis as before.
 The amortized cost . 

 Case 2: αi−1 < 1/2  and αi < 1/2 (no expansion) 
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Analysis: insert operation2/2
 Case 3: αi−1 < 1/2  and αi ≥ 1/2 (no expansion)

 Therefore, amortized cost of insert is at most 3. 
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Analysis: delete operation1/3
 Case 1: αi−1 < 1/2 
 This implies αi < 1/2.
 If no contraction:

 If contraction:
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 Case 2: αi−1 ≥ 1/2 (No contraction happens)
 Case 2a: αi ≥ 1/2:

 Case 2b: αi < 1/2:
Since αi−1 ≥ 1/2, we have  
numi = numi− 1 − 1 ≥ ½ · sizei− 1 − 1 = ½ · sizei − 1.  
Thus,
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Summary
 Therefore, amortized cost of delete is at most 2.

 The amortized cost of each operation is bounded above by 
a constant .

 The actual time for any sequence of n operations on a 
dynamic table is O(n).
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a   b  c   d  e   f   g   h

a   b  c   d   e   f   g

a   b   c  d   e   f

a   b  c   d   e

a   b  c   d

$1   $1  $1  $1

$1  $1  $1

$1  $1

$1

$1

C = 0

C = 2 Pay $3(case 1a)

C = 4 Pay $3

C = 6 Pay $3

C = 8 Pay $3

C = 2 Pay $3(case 1b)

2) / 1  (Only  Insertion ≥α

a   b  c   d  e   f   g   h   i
$1

$1   $1  $1  $1

$1  $1  $1

$1  $1

$1
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a   b  c   d  e   f   g   h

a   b  c   d   e   f   g

a   b   c  d   e   f

a   b  c   d   e

a   b  c   d

a  b   c

$1   $1  $1  $1

$1  $1  $1

$1  $1

$1

$1

C = 0

C = 1 Pay $2(case 1a)

C = 2 Pay $2

C = 3 Pay $2

C = 4 Pay $2

C = 1 Pay $1(case 1b)

2) / 1  (Only  Delection ≤α


