Algorithms

Chapter 17
Amortized Analysis

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Aggregate analysis 2 8 # #
» The accounting method

» The potential method

» Dynamic tables

Amortized analysis »# - &5, & operations, 2 R R A ~ 18

» Analyze a sequence of operations on a data structure.
afg‘ : ‘@ g'R\ 2] 2] Dé - operahton 555'%‘1& Ttsﬁ»lﬁ,1g$ﬁl ﬁ’%,é"f@x@)&?{» Eﬁ&%
» Goal: Show that although some individual operations may be

expensive, on average the cost per operation is small.

» Average in this context does not mean that we’re averaging over a
distribution of inputs.

» No probability is involved.:3 &% :% g3 & 7 4
» We’re talking about average cost in the worst case. ¥+ f & 53 :¥ 15 %

» We show that for all n, a sequence of n operations takes
worst-case time T(n) in total. B8y 2 2§

Example 1: Stack operations

» Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S, k).

_- k18
» PUSH(S, x): push object x onto stack S. " PoP

» Each runsin O(1) time.
» A sequence of n PUSH operations takes O(n) time.

» POP(S): pop the top of stack S and returns the popped object.

» Each runsin O(1) time.
» A sequence of n POP operations takes O(n) time.

» MULTIPOP(S,k)

1. while not STACK-EMPTY(S) and k>0
2. PoP(S)
3. k< k-1

» Running time of MULTIPOP(S,k): % stack HB31B %' <

5:)4@ 1&’: Kk
» Let each PusH/PoOP cost O(1). B pop

» The number of iterations of while loop is min(s, k), where
s = number of objects on stack.

» Therefore, total cost = min(s, k). ?{% =min($, k)

» The running time of a sequence of n PUSH, POP, MULTIPOP
operations?

» Analysis(l):
» Worst-case cost of MULTIPOP is O(n).
» Have n operations.
» Therefore, worst-case cost of sequence is O(n?). & n- O¢r) = O (nd

> Analysis(ll): g yniy 8150 sr0ckh, 25 08 B - 0
» Each object can be popped only once per time that it’s pushed.

» At most n objects are pushed into S. & 35% n 18 & stack P
» Have < n PusHes = < n Pops, including those in MULTIPOP.
» Therefore, total cost = O(n). multipop R4 + pop Rig'< n
» Average cost of an operation = O(1). Push =2 43 ¢ n
= multipop R4 + pop:Lix + Push = 4y
 BaER AR <2n

» Emphasize again, no probabilistic reasoning was involved.
» Showed worst-case O(n) cost for sequence.
» Therefore, O(1) per operation on average.

BmIdbek 42775

_ _ o'a M 4Ed
Example 2: Incrementing a binary counter

» k-bit binary counter A[O .. k - 1] of bits

. . . 2fiiiz:t
» A[0] is the least significant bit. Counter \’*\ \“\ . Tow
AS O D DD QSN Q

» Alk - 1] is the most 5|gn|ﬁcant bit, VAUE SRR cost
0 00000 0
» Value of counter is ZA[I 2 1 00000 1
= 2 00000 3
» Initially, counter value is O. 3 00000 4
4 00000 7
P 5 00000 8
» To add 1 (modulo 2%), we use the c 00000 10
i 7 0 00 O (11
following procedure. L 0000 -
9 0000 16
INCREMENT(A) 10 0000 18
1 <0 11 0000 19
2. whilei<kandAlil=17 _ _ 12 0000 22
3 Ali] < 0]iim 13 0000 23
4, <—i+1 14 00O0O 25
. if i< k 15 0000 , 26
6 then A[i] « 1 16 000 31

Running time analysis

» The running time of a sequence of n INCREMENT o%erajions ?
-1B opemﬁonn%é@o(k)
» Analysis(l) :

» A single execution of INCREMENT takes time O(k) in the worst case.
» Have n operations. & n1® operation 5 Ownk)

» Therefore, worst-case cost of sequence is O(nK).

» Average cost of an operation = O(k).

» Analysis(ll):

» A[O] flips every time, A[1] flips only every other time, A[2] flips only
every fourth time, and so on.

rk -
oM@ & s:» OEndd
» Total number of flipsis T(n) =n + |_n/2J + |_n/4J +..) :Z,
<2n 2, Y :p
» Average cost of an operation = O(1). 3 8

Outline

» Aggregate analysis

» The accounting method &1@#m+RBER
BAMR P

» The potential method

» Dynamic tables

R DR kat4i1e B %

» Assign different charges to different operations. T
» Some are charged more than actual cost. 8% Et?f‘i’%

» Some are charged less. % tt g BE
° A RF=7 A+ BY costod amoritized cost

» The amount we charge an operation is called its amortized cost.

» When amortized cost > actual cost, store (amortized cost -

actual cost) on specific objects in the data structure as credit.

: : %4+ BY cost o credit
» Use credit later to pay for operations whose

actual cost > amortized cost. % %o 1403 M credit 1%

» Differs from aggregate analysis:

» In the accounting method, different operations can have different
costs. & accounting metod , & = 4§ operotion B 2R BY cost

» In aggregate analysis, all operations have same cost.

AR 3% amorized cost 2 actual cost
T TR

» Need credit to never go negative.

» Otherwise, have a sequence of operations for which the amortized

cost is not an upper bound on actual cost. Z-suxﬁﬁhzl{‘rié Q15 AR # &R

» Amortized cost would tell us nothing. (amovitzed cost < actual cost)

» Let ¢, = actual cost of ith operation, %+ 1@ EREE LS
C. = amortized cost of ith operation.® < 1@ b4kt BT &

n n
» Then require) ¢ =) g for all sequences of n operations.
i=1 i=1

A BhERBNEE 2 SiiM@ar el et §

n n
» Total credit stored in the data structure = ZQ —Zq,
n n i=1 i=1
4%5 By ¢credit = E:_lcl} _ .Z“C,(I |

Example 1: Stack operations

operation actual cost amortized cost

PUSH 1

push 4§ §2- $' B3 push
PoP 1 0 $1 B3 pop 8% multipop
MULTIPOP min(k, s) 0 1B stack BY object

B$1, credit 20
» Intuition: When pushing an object, pay 2.
S1 pays for the PusH.
S1is prepayment for it being popped by either POpP or MULTIPOP.
Since each object has $1, which is credit, the credit > 0.

v Vv VvV Vv

Therefore, total amortized cost < 2n, is an upper bound on total
actual cost. total cost ¢ amortized cost ¢ 2n

» Average cost of an operation = O(1). *
credit 20

Example 2: Incrementing a binary counter

» Charge S2 to set a bit to 1. %1% 4B bithy 1+ $2
» $1 pays for setting a bit to 1. set # $1

» $1is prepayment for flipping it back to 0. $' 8% La bk
» Have $1 of credit for every 1 in the counter, PF % credit 20

» Therefore, credit > 0.

» Amortized cost of INCREMENT:

Cost of resetting bits to 0 is paid by credit.
At most 1 bit is set to 1. _sxBgiz R -1® bit

4
4
» Therefore, amortized cost < S2. total cost ¢ amortized cost < 2N
» For n operations, amortized cost = O(n). ¢+

4

Average cost of an operation = O(1). credit 2 0

Outline

» Aggregate analysis
» The accounting method 1® 4~ T& B

» The potential method 242 © $(0:)20 (1R k& BE)
O G :om ZpedRE

TAYMYE -1BER6GITE P

» Dynamic tables

T4 EMYE - 1B R etk B

» Like the accounting method, but think of the credit as potential
stored with the entire data structure.

» Can release potential to pay for future operations.
» Most flexible of the amortized analysis methods.

» Let D, = data structure after ith operation, % £ i 18 operation % 112G
D, = initial data structure, °
¢, = actual cost of jith operation, & : 1@ operatior By R BE £ &
132424 « C, = amortized cost of ith operation.

» Potential function® : D, — R
» ®(D)) is the potential associated with data structure D,

¢ =c+dD)-d(D._) C: = Cis QDO - (D)

Iood = 300 + "Moo

| M . L ERE RBRE 2R B %o
increase in potential due to ith operation

» Totalamortizedcost=) &
K EB 1+ By 5E =

— Z(C' +®(D,)-d(D,,))

_ Zq + (D)~ ®(D,).

» If we require that ®(D;) > ®(D,) for all i, then the amortized cost
is always an upper bound on actual cost.
D 3D 2 300), B E M ehieitEst 2 B REEMRS

» In practice: ®(D,) =0, ®(D,) = 0 for all i.
ek HPAIFE 8OV -0 AIEED20 €132 R EE1E

b @B ELd

: 0 . h P potential functio ¢ 3
@%‘Eé & poteEnt:al Funct:on actual cost 30 BH

Example 1: Stack operations

» @ = # of objects in stack. step) - F& potential function
_ ﬁ'kxk g_)stocktbéi)tia S-l-ep2; '6%':‘;1 ﬁ;?:k ke — ﬁ;aﬂg%
" Do = empty stack = B{Dg) = 2 2(0:)28(Do) for oll X

» Since # of objects in stack > 0, ®(D,) > 0 = ®(D,) for all i. BIAE

operation actualcost ®(D,)-®P(D; ;) amortized cost

PUSH 1 (s+1)-s=1 1+1=2
PoP 1 (s-1)-s=-1 1-1=0
MuLTIPOP k'=min(k,s) (s-k')-s=-k k'-k =
s = # of objects initially. & - 1® operation

> Therefore amortized cost of a sequence of n operations
_Zc =0(n). 2 ap B33t 12 % step3: 42 By & 6y 13212 B 48 1o
Step U :]\”Bfﬁ‘@ﬁ > Zipit &

17 ﬂto:p'ijﬁhogh)‘ftﬁ

» @ =b, =#of 1's after ith INCREMENT. % 15318 4
» D, = all bits are set to zero = ®(D,) = 0.
» Suppose ith operation resets t, bits to 0.183 i3 A h operation &% ti bit B o

» ¢ <t + 1. (resets t, bits, sets at most one bit to 1) A #h operation BIFE % < ti+1
(§2R1)
» If b; =0, the jith operation reset all k bits and didn’t set one, so
b ,=t=k=>b=b_,—t. Hi=056rAbit B0, BiFEFbitE)
2 bazbiy-ta
» If b; >0, the ith operation reset t; bits, set one, sob,=b,_, — t; + 1.
Bir>0 3 bizbhia-ts+l
» Ineithercase, b;<b,_, -t +1.
Z2HGI R bicps, -ti+

» Therefore, ®(D)-P(D_)=h—-Nh,
4324R B v ho <(h, -t +1D)-h,
=1-t.
433-12% = ?3}3?@% + 43242 B @ ho
» The amortized cost is therefore ¢ =¢ +®(D,)-d(D._,)
<(t+DhH+d-t)
=2.
» Thus, amortized cost of n operations = Z C = O(n).
=1

zipEyiadR% = Om)

Outline

» Aggregate analysis

» The accounting method
» The potential method

» Dynamic tables

» Scenario

>
4
>

Have a table — maybe a hash table. % k0 5%, 42 1% 2 3 & toble P
Don’t know in advance how many objects will be stored in it.

When it fills, must reallocate with a larger size, copying all objects
into the new, larger table. : &% & ¢ - 1® & B9

When it gets sufficiently small, might want to reallocate with a
smaller size. %8 8% | 49 size T s

Initially, T is a table of size 0. - PAt4 size=o

Perform a sequence of n operations on T, each of which is either
Insert or Delete. W 1® operation, & - 1B 5] &€ delete ov insert

» Goals

>
4

21

O(1) amortized time per operation. 3 &, § - 18 operation & Rz B3 RE
Unused space always < constant fraction of allocated space.

--- 3ERBIBIspoce- oo

Z ConStont
% s Space

» Load factor a(T) B &% = ot(T)
» a(T) = num|[T]/size[T]

num[T] = # items stored, size[T] = allocated size.
» If size[T] =0, then num[T] = 0. Define a = 1.
» Never allow a > 1. % size (TIz0, B num[Tlz0

: > % g =
» Keep a > a constant fraction. 7T A=

Table expansion

TABLE-INSERT (T, x)

1. ifsize[T] =0] sizezo

2 then a.IIocate table[T] with 1slot] 2 & ¢ - 18 space | Notice : If only

; . suzg[ﬂ <1 ' insertions are

4. if num[T] = size[T] ' verformed. the |
& 5. then allocate new-table with 2 - size[T] slots Ip df ’ ;
ot 3 6 insert all items in table[T] into new-table i oa factoro a
3 248%|, free table[T] table is always

8. table[T] « new-table atleast1/2 _______

Lo, size[T] « 2 - size[T] to P R B insertion

10. insert x into table[T]

I
1. num[T] < num[T] +1 ? (M2

» When the table becomes full, double its size and reinsert all
existing items. 39 $% - 24k B9 Ex T, YIH L BBt &

» Each time we actually insert an item into the table, it’s an
elementary insertion.

Running time analysis

» The running time of a sequence of n TABLE-INSERT operations on

an initially empty table ?
» Analysis(l) :

» c; = actual cost of ith operation.

» If not full, ¢, = 1.

» If full, have i — 1 items in the table at the start of the ith operation.

Have to copy all i — 1 existing items, then insert ith item = ¢, =i .
» noperations = c; = O(n) = O(n?) time for n operations.
135 9 Cazl
e Ci = Copy A-1 object + insert J
= A

n 1B operations 2 O (nd)

D
)
3

Aggregate analysis &

» Analysis(ll): 2% Pe5pi¢:2,.3.5 9.,
» Expand only wheni-1is an exact power of 2.

{i if 1—1 is exact power of 2,

1 otherwise.
1.93 h_‘

n 2%+ 2"+ 224'..."'2
» Totol cost = Y ¢ < n
=l 12345617%9

_ n+2ngnJ+1_1 E"-E‘-anS 1119
- 71 i‘th\z:s.glIIQ‘
< N+ 2n R

12 4 2
24655 %98 THARKT

» Therefore, aggregate analysis says amortized cost per operation = 3.

Accounting method #isam:

» Charge S3 per insertion of x.
» $1 pays for X’s insertion. ft $1
» S1 pays for x to be moved in the future. Beens
» 51 pays for some other item to be moved. #g, 4 %$1

» Suppose that the size of the table is m immediately after an
expansion, o poge 40 B1 e 51 3R 23 T 45 R BATE, mAB insertion’®
AR RET

» Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

» Will expand again after another m insertions.

» Each insertion will put S1 on one of the m items that were in the
table just after expansion and will put $1 on the item inserted.

» Have S2m of credit by next expansion, when there are 2m items to
move. Enough to pay for the expansion, with no credit left over!

__

» ®(T) =2 numlT] - size[T] 1242 B 8% 5k
» Initially, num[T] = size[T] =0 = ®(T) = 0.
» Just after expansion, size[T] =2 - num[T] = ®(T) = 0. by T 1k
» Just before expansion, size[T] = num[T] = ®(T) = num[T] & 955
= have enough potential to pay for moving all items.
» Always have ®(T) > 0. GipadhE
num[T] 2 1/2- size[T] 13212 2 gt 15

= 2 - num[T] > size[T]
= ®(T) > 0. potential method:

stepl . #& & potential function
» Amortized cost of ith operation:

num; = num[T] after ith operation,

. . . _ 2 2(D:)28(Do) for all &
size; = size[T] after ith operation, step3: Y9 By & by 1124R & 48 ho
D, = O after ith operation.

e stepl: REpRB2Eihpit#
7 -
235 Pz BT &

step2: 4B B inte - BAus &

ORI T
e R LI EACEA | ® 3 f 4 29 E 25 HP By &3

» If no expansion: B py T %

Sze =

sze

G+ -,
= 1+(2-num -size) — (2-num_, —size_,)

num = num, +1,
¢ =1 = 1+(2-num -size) — (2(num —1)-size)
= 1+2
» If expansion: = 3.
sze = 2-9ze,
Size , = num,=num —1,
G = num,+1=num.
G = G+ -9,
= num + (2-num,-size;) — (2-num,_ —sze,)
= num;+ (2-num, —2(num, -1)) - (2(num, —1)—(num; —1))
= num + 2— (num, —1)
N Y

32 — —

(N

Vish
24

16
I D;

» The above Figure plots the values of num,, size;, and ®@; against i.

» Notice how the potential builds to pay for the expansion of the
table.

» When a drops too low, contract the table.

» Allocate a new, smaller one. O O 2 constant
: 5 o
» Copy all items. s BAE T 2 3B DFosize M § 4x'tE
QIR R BELKS
» Preserve two properties = amoritized cost ¢ constant

» load factor a bounded below by a positive constant, and
» amortized cost per operation bounded above by a constant.

» Obvious strategy
» Double size when inserting into a full table. v 218
» Halve size when deletion would make table less than half full.
» Then always have 1/2 <a<1. 735 - % » s ¥

» Consider the following scenario

>
4

>
4

» Simple solution:

>
>
>
4

The first n/2 operations are insertions, & 5' B)operation 2 insert

For the second n/2 operations, we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,...
W_J |\ ~ J . ~ J . ~ J U ~ J -
double halve double halve double :FE-FEE

The cost of each expansion and contraction is ©(n). ZBRIH AP
The total cost of the n operations is ®(n?). & n- Q) =0 (n’

D Eeyidm

Double size when inserting into a full table. =%+ 248
Halve size when deleting from a 1/4 full table. 5]3.,—& 03 R ¥
After either expansion or contraction, a = 1/2.

Always have 1/4 < a < 1. it 1@ z': cael

A 9%?. : E;ﬁ}i\‘-zéﬁﬂéde\e*e"*
TRAY ': ' . \
T exPansion @y s t‘%’ﬁ& 218 A 4x'

» Observation 1:

» Need to delete half the items before contraction.
» Need to double number of items before expansion.

2-num([T]-size[T] ifa=1/2,

» L =
et (D(T) {gze[T]/Z—num[T] ifa<l/2.

» Tempty => D=0.

» =>1/2=>num=1/2:size = 2-num =size = ® >0.
}Eﬁﬁﬁittt—

< = - size > O > 0.
» a<1l/2=>num<1/2 -size=>d20 R4S %

32 T I
| 1
! !
24 ¥ :
qgze;fl I
|
16 - - -
I \\ani \
I N
S >\\//\\ ‘ v
/ Oi| / /| \
A VT T TUA J
0 8 16 24 32 40 28

» The potential is never negative. Thus, the total amortized cost of

a sequence of operations with respect to @ is an upper bound
on the actual cost of the sequence.

LB 038, Boredt 57
Some properties3/3 %ozt B double 3 o= 3 & A %03,

» Observation 2:
» a=1/2 = ®d=2-num-2-num=0.
» a=1 = d=2-:-num-num=num. ik
» a=1/4 = ®=size/2 -num =4 -num/2 - num = num. R ¥

» Therefore, when we double or halve, have enough potential to pay
for moving all num items.

» Let ¢; = actual cost of ith operation,
C. = amortized cost of ith operation,
num;=the number of items after the ith operation,
size; = the size of the table after the ith operation,
a; = the load factor of the table after the ith operation,
@, = the potential after the ith operation.

» Casel:a; ,21/2 BB oi-1 B TR, 42 insertion 15 1R 5 3
» The same analysis as before.

O

» The amortized cost (5' = 3.

» Case2:a;_;<1/2 and a;<1/2 (no expansion)
G = G+ +i
= 1+(size;/2-num;) — (size, /2 —num;_,)
= 1+(size;/2-num;) — (size; / 2—(num; —1))
= 0.

msevt 2 B BT 5 Tnsevt 1% R D 4 £y P

» Case3:a;_,<1/2 and a3 1/2 (no expansion)

¢ 1+ (2-num, —size;) — (size, /2—num,_,)
= 1+ (2 (num_ +1)-size,,) - (size_, /2—num_)

= 3-num_, — %sizei_l+3

= 3-¢_Sze_ - %-sizei_l+3

3 . 3 .

< —-92¢ , — —-972¢ ,+3
2 2

= 3.

» Therefore, amortized cost of insert is at most 3.

S

31 R olior 516 43 delete 1 Fs 5 A 2 36

» Casel:a; ,<1/2
- . I
» This implies a; < 1/2. delete 24§0i¢ 3
» If no contraction: 2% % ¥ £ &

& = 1+(size;/2—num;i) - (sizei_; /2—num;_;)
= 1+(size;/2—num;) — (size; /2—(num; +1))
= 2.

» If contraction: 4 ¢ Bk

& = (numi+1)+(size;/2-num;) — (sizei /2—num;_;)
— T
move + delete
size; /2 = sizei; 1 4 = numi,; = num; +1]
(num; +1)+ ((num; +1)—num;) = ((2-num; +2)—(num; +1))

» Case 2: a; , 21/2 (No contraction happens)
» Case2a:a;>1/2:

A

¢ = 1+(2-num-size) - (2-num_ -size)
= 1+(2-num - size) — (2-num +2-size)
= —1.

» Case2b: ;< 1/2:
Since a;,_; 2 1/2, we have
num;,=num,_,—-12%-size,_;—1="%"size;, - 1.
Thus, G I+ (size; /2-num;) — (2-num;

—sizei_l)
I+(sizej /2—num;) — (2-num; |

—Size;)

-1
-1

= -1+ 3-sizei_l— 3-num;
2

3 . 1 .
< -1+ —-Slze; _1 - 3(—-S|zei_1—1j
2 2

Summary

» Therefore, amortized cost of delete is at most 2.

delete 131 B % 1 $ 2
» The amortized cost of each operation is bounded above by

a constant .

» The actual time for any sequence of n operations on a
dynamic table is O(n). n 1@ operations B%iFomn

Insertion Only (o > 1/2)
C=0
lalbleld| | |]|

C=2 PayS$3(case 1a)
s1 S1
lalblc|dlel | | |

C=4 Pay$3
$1 $1 $1 $1
lalblcld]e[f] | |

C=6 Pay$3
$1 581 %1 $1 81 $1
lalblc|d]e|flg| |

C=8 PayS$S3
S1 $1 51 5151 S1 51 61
lalblc|dle|f[g|h]

C=2 Pay S$3(case 1b)
51 $1
lalblc|dle|flglhfi] | [[| | ||

Delection Only (o < 1/2)
C=0
[al blc|dlelflgfh| | | | [| |||

C=1 PayS$2(case 1a)
s1

lalblc|dle|[flg| | | [[[[|]|
C=2 Pay$2

S1 %1
lalblcldlelfl | | [[[[[][]

C=3 Pay$2
S1 61 61
lalblefdlel [[I [[| [[][]

C=4 Pay$S2
S1 $1 51 61

lalblefd] | | J [[[[]]]

C=1 PayS$1(case 1b)
s1

lblel | 111]

