Algorithms Chapter 17 Amortized Analysis

Associate Professor: Ching-Chi Lin 林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- ▶ Aggregate analysis 總量分析
- The accounting method
- The potential method
- Dynamic tables

Amortized analysis分析-序列的operations,不是只有一個

- Analyze a sequence of operations on a data structure.
 目標: 電說明留- operation可能很花時間,但平均而言,每一個花的時間不多
- **Goal:** Show that although some individual operations may be expensive, on **average** the cost per operation is small.
 - Average in this context does not mean that we're averaging over a distribution of inputs.
- No probability is involved. 没有牽涉到机率分析
- ▶ We're talking about average cost in the worst case. 平均而言最壞情形
- We show that for all n, a sequence of n operations takes worst-case time T(n) in total. 算 ⋻ 是 總 量

Example 1: Stack operations

- Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S,k).
- PUSH(S, x): push object x onto stack S.
 - Each runs in O(1) time.
 - A sequence of *n* PUSH operations takes *O*(*n*) time.
- POP(S): pop the top of stack S and returns the popped object.

- Each runs in O(1) time.
- A sequence of *n* POP operations takes *O*(*n*) time.
- MULTIPOP(S,k)
 - **1.** while not STACK-EMPTY(S) and k > 0
 - 2. POP(*S*)

3. $k \leftarrow k-1$

Running time analysis $_{1/2}$

▶ Running time of MULTIPOP(S,k): 在 stack 中 時 個 款: S 要pop 時個 款: k

- Let each PUSH/POP cost O(1).
- The number of iterations of while loop is min(s, k), where s = number of objects on stack.
- Therefore, total cost = min(s, k). 花费 = min(s, k)
- The running time of a sequence of n PUSH, POP, MULTIPOP operations?

Analysis(I):

- ▶ Worst-case cost of MULTIPOP is *O*(*n*).
- Have *n* operations.
- ► Therefore, worst-case cost of sequence is $O(n^2)$. → $n \cdot O(n) = O(n^2)$.

Running time analysis_{2/2}

Analysis(II):

- 個物件放到stack中,最多只会取出一次

- Each object can be popped only once per time that it's pushed.
- At most n objects are pushed into S. 最多なn個到stack中
- Have $\leq n$ PUSHes $\Rightarrow \leq n$ POPs, including those in MULTIPOP.
- ► Therefore, total cost = O(n). multipop $\frac{1}{2}$ $\frac{1}{2}$ + pop $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ n
- Average cost of an operation = O(1). Push $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

⇒ multipop 灾权 + pop 灾权 + push 次权

➡ 沒有机率分析

≤ 2n

- Emphasize again, no probabilistic reasoning was involved.
 - Showed worst-case O(n) cost for sequence.
 - Therefore, *O*(1) per operation on average.

進位→由右至左 將 ","→"o"

Example 2: Incrementing a binary counter

▶ *k*-bit binary counter A[0..*k* – 1] of bits

- A[0] is the least significant bit.
- A[k-1] is the most significant bit.
- Value of counter is $\sum_{i=1}^{k-1} A[i] \cdot 2^i$.
- Initially, counter value is 0.
- To add 1 (modulo 2^k), we use the following procedure.

```
INCREMENT(A)
```

```
1. i ← 0
```

```
2. while i < k and A[i] = 1
3. A[i] \leftarrow 0 
↓ 1
```

```
4. i \leftarrow i + 1
5. if i < k
```

7

```
if i < k
```


Counter value	RIT	Al6	e AS	Ala	A3	'AV2		, kloj	Total cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

2住住まえ法

Running time analysis

• The running time of a sequence of *n* INCREMENT operations? - $(B) \circ Peration \oplus E \oplus O(k)$

Analysis(I) :

- A single execution of INCREMENT takes time O(k) in the worst case.
- ▶ Have n operations. 有n個 operation → O(nk)
- Therefore, worst-case cost of sequence is O(nK).
- Average cost of an operation = O(k).

Analysis(II):

A[0] flips every time, A[1] flips only every other time, A[2] flips only every fourth time, and so on.

2 , 4次

3, 8-2

► Total number of flips is $T(n) = n + \lfloor n/2 \rfloor + \lfloor n/4 \rfloor + \dots$ $2 = \sqrt{2}$

≤ 2*n*

• Average cost of an operation = O(1).

Outline

- Aggregate analysis
- ▶ The accounting method 每個物件有自己的 個人帳戶
- The potential method
- Dynamic tables

未雨網繆 先付錢後消费

The accounting method 1/2 讓不同的 operation 有不同的 cost

Assign different charges to different operations.

- Some are charged more than actual cost. 有些比寥隙多
- ▶ Some are charged less. 有些比實際少
- The amount we charge an operation is called its **amortized cost**.

1+ By cost 04 amoritized cost

- When amortized cost > actual cost, store (amortized cost actual cost) on specific objects in the data structure as credit. %1+ b) cost of credit
- Use credit later to pay for operations whose
 actual cost > amortized cost. 不夠付時角credit 付
- Differs from aggregate analysis:
 - In the accounting method, different operations can have different costs. 在 accounting metod, 每一個 operation 有不同时 cost
 - In aggregate analysis, all operations have same cost.

保證 amorized cost 2 actual cost The accounting method_{2/2} 付的錢2實際花费

(amoritzed cost < actual cost)

Need credit to never go negative.

- Otherwise, have a sequence of operations for which the amortized cost is not an upper bound on actual cost. 不可以信用。收入标准效
- Amortized cost would tell us nothing.
- ▶ Let c_i = actual cost of *i*th operation, 第×個动作真正的花费 \hat{c}_i = amortized cost of *i*th operation. 第×個动作付的花费

Then require $\sum_{i=1}^{n} \hat{c}_{i} \ge \sum_{i=1}^{n} c_{i} \text{ for all sequences of } n \text{ operations.}$ \$\vec{h}_{i=1} \lefta \lefta \vec{h}_{i} \geq \vec{h}_{i=1} \lefta \vec{h}_{i} \vec{h}_{i}

Example 1: Stack operations

operation	actual cost	amortized	cost
Push	1	2	puch (+ + a, \$1 為3 push
Рор	1	0	\$1為3pop或multipop
Multipop	min(<i>k, s</i>)	0	每個在 stack 中的 object
			有\$1, credit ≥0

Intuition: When pushing an object, pay 2.

- ▶ \$1 pays for the PUSH.
- ▶ \$1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has \$1, which is credit, the credit \geq 0.
- Therefore, total amortized cost ≤ 2n, is an upper bound on total actual cost.
 total cost ≤ amortized cost ≤ 2n

credit 20

• Average cost of an operation = O(1).

12

Example 2: Incrementing a binary counter

Charge \$2 to set a bit to 1.

- \$1 pays for setting a bit to 1.
- \$1 is prepayment for flipping it back to 0.
- Have \$1 of credit for every 1 in the counter.
- Therefore, credit ≥ 0 .

Amortized cost of INCREMENT:

- Cost of resetting bits to 0 is paid by credit.
- At most 1 bit is set to 1.
- Therefore, amortized $cost \leq 2 .
- ▶ For *n* operations, amortized cost = *O*(*n*).
- Average cost of an operation = O(1).

當設定-個 bit時,什\$2 set 花 \$ 1

\$1留著翻轉

FFIX credit 20

- 次最多設定 - 1圈 bit total cost ≤ amortized cost ≤ 2n

credit 20

Outline

- Aggregate analysis
- The accounting method 個人帳戶
- The potential method 健保:の重(い)20 (健保永遠為正)
- Dynamic tables

健保: O 重(Di)20 (健保永遠為正) ② 云 ci = O(n): 全部的健保费 全体物件有-個共同的帳戶

全体物件有一個共同的帳戶

The Potential method $_{1/2}$

- Like the accounting method, but think of the credit as potential stored with the entire data structure.
 - Can release potential to pay for future operations.
 - Most flexible of the amortized analysis methods.
- Let D_i = data structure after *i*th operation, 在算;個 operation 後 1建保局 D_0 = initial data structure,
 - c_i = actual cost of *i*th operation, 第:個 operation 的實際花费

健保養 \hat{c}_i = amortized cost of *i*th operation.

• Potential function $\Phi: D_i \to R$

- If we require that Φ(D_i) ≥ Φ(D₀) for all *i*, then the amortized cost is always an upper bound on actual cost.
 物果 Φ(D_i) ≥ Φ(D₀),則前 i 個 动作 付的錢 ≥前 i 個 寒 際 的花费
- In practice: Φ(D₀) = 0, Φ(D_i) ≥ 0 for all i.
 窗作上, 我 1門設定 重(D₀) = 0, 且 讓重(D_i) ≥ 0 ∈ 1建保 不能任

图 難 矣:	決定 potential f	$\overline{\mathbf{u}}$ nction $\overline{\mathbf{\Phi}}$	要線的健保费是由 actual cost 和車算出			
Example	1: Stack op	perations	$\hat{C_{\lambda}} = C_{\lambda} + \Phi(D_{\lambda}) - \Phi(D_{\lambda-1})$			
 ▶ Φ = # of ob D₀ = empty Since # of c 	jects in stack. 存款:在 stack stack $\Rightarrow \Phi(D_0$ bjects in stack	step $\mathbf{E} \oplus \mathbf{E} \in \mathbf{X}$ ভ্রা $\mathbf{E} \oplus \mathbf{E} \in \mathbf{X}$ step 2 $\mathbf{E} = 0$. $\mathbf{C} \ge 0, \Phi(D_i) \ge 0 = 0$	1. 確定 potential function 2.: 確定存款比-開始多 → 互(D;)2互(Do) for all; D(D ₀) for all <i>i</i> . 存款為正			
operation	actual cost	$\Phi(D_i) - \Phi(D_{i-1})$	amortized cost			
PUSH	1	(s + 1) - s = 1	1 + 1 = 2			
Рор	1	(s - 1) - s = -1	1 - 1 = 0			
Multipop	<i>k</i> '= min(<i>k, s</i>)	(s-k')-s=-k'	k'-k'=0			
s = # of object	s initially.	每-個 operati	on			
Therefore,	amortized cos	t of a sequence o	f <i>n</i> operations			
$=\sum_{i=1}^{n}\hat{c}_{i}=O(n)$).全部的健保费	step3: 將線交的健保费相加				
i = 1	,	step 4:全	部健保费2全部花费			
17		⇒ 0 }	和平均而言的花费			

Example 2: Incrementing a binary counter $_{1/2}$

- $\Phi = b_i = \#$ of 1's after *i*th INCREMENT. 存款: 1 的1^個 钗
- $D_0 = \text{all bits are set to zero} \Rightarrow \Phi(D_0) = 0.$
- Suppose ith operation resets t_i bits to 0.假設ith operation 設 ti bit 為o
 - ▶ $c_i \le t_i + 1$. (resets t_i bits, sets at most one bit to 1) it operation 的花養 ≤ $t_i + 1$. (a) (認成)
 - ▶ If $b_i = 0$, the *i*th operation reset all *k* bits and didn't set one, so $b_{i-1} = t_i = k \Rightarrow b_i = b_{i-1} - t_i$. 存款 =0.設所有 bit 為0. 没設任何bit為1 ⇒ bi = bin = t_i
 - If $b_i > 0$, the *i*th operation reset t_i bits, set one, so $b_i = b_{i-1} t_i + 1$.

存款>0 > bi = bi-1 - ti +1

In either case, b_i ≤ b_{i-1} - t_i + 1.
 不論存款為何, bi ≤ bi-1 - ti+1

Example 2: Incrementing a binary counter $_{2/2}$ • Therefore, $\Phi(D_i) - \Phi(D_{i-1}) = b_i - b_{i-1}$ 健保局增加 $\leq (b_{i-1} - t_i + 1) - b_{i-1}$ $=1-t_{i}$. 健保费 = 實際花费 + 健保局增加 • The amortized cost is therefore $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ $\leq (t_i + 1) + (1 - t_i)$ = 2.• Thus, amortized cost of *n* operations = $\sum_{i=1}^{n} \hat{c}_i = O(n)$. 全部的健保费= O(n)

Outline

- Aggregate analysis
- The accounting method
- The potential method
- Dynamic tables

Dynamic tables $_{1/2}$

Scenario

- Have a table maybe a hash table. 不知有多少物14会存在 table 中
- Don't know in advance how many objects will be stored in it.
- When it fills, must reallocate with a larger size, copying all objects into the new, larger table. 満→產生 個大的
- When it gets sufficiently small, might want to reallocate with a smaller size. 多小時,將 size 变小
- ▶ Initially, T is a table of size 0. ♀ ♥ ♥ size = o
- Perform a sequence of *n* operations on *T*, each of which is either Insert or Delete. n 個 operation, 每 - 1圈 可能 delete or insert

Goals

- ▶ O(1) amortized time per operation. 平均而言,每一個 operation 為常校時間
- ► Unused space always ≤ constant fraction of allocated space. 没有用针的space = constant

全 部 space

Dynamic tables_{2/2}

- Load factor α(T) 負載率 = α(T)
 - $\alpha(T) = \text{num}[T]/\text{size}[T]$
 - num[T] = # items stored, size[T] = allocated size.
 - If size[T] = 0, then num[T] = 0. Define α = 1.
 - Never allow $\alpha > 1$.
 - Keep α > a constant fraction.

當 size [T]=0, 則 num[T]=0 ⇒定義d=1

Table expansion

- When the table becomes full, double its size and reinsert all existing items. 満3 → 找 個 2倍大 的教室, 將学生移过去
- Each time we actually insert an item into the table, it's an elementary insertion.

Running time analysis

The running time of a sequence of n TABLE-INSERT operations on an initially empty table ?

Analysis(I) :

- ▶ c_i = actual cost of *i*th operation.
- If not full, $c_i = 1$.
- ▶ If full, have i 1 items in the table at the start of the *i*th operation. Have to copy all i - 1 existing items, then insert *i*th item $\Rightarrow c_i = i$.
- *n* operations $\Rightarrow c_i = O(n) \Rightarrow O(n^2)$ time for *n* operations.

Aggregate analysis 總量分析

- ▶ Analysis(II): 換教室時間桌: 2, 3, 5, 9...
 - ▶ Expand only when *i* − 1 is an exact power of 2.

$$c_i = \begin{cases} i & \text{if } i-1 \text{ is exact power of } 2, \\ 1 & \text{otherwise.} \end{cases}$$

▶ Totol cost =
$$\sum_{i=1}^{n} c_i \leq n + \sum_{i=0}^{\lfloor \lg n \rfloor + 1} - 1$$

$$= n + \frac{2^{\lfloor \lg n \rfloor + 1} - 1}{2 - 1}$$

$$\leq n + 2n$$

$$= 3n$$

$$= 3n$$

$$2^{0} + 2^{1} + 2^{2} + ... + 2^{\lfloor \lg n \rfloor}$$

$$= 123456789$$

$$= 123456789$$

$$= 123456789$$

$$= 12315119$$

$$= 12315119$$

$$= 12315119$$

$$= 12315119$$

$$= 123456789$$

$$= 12315119$$

$$= 12315119$$

$$= 12315119$$

$$= 123456789$$

$$= 12315119$$

Therefore, aggregate analysis says amortized cost per operation = 3.

Accounting method 存款存在物件上

- Charge \$3 per insertion of *x*.
 - ▶ \$1 pays for x's insertion. 花\$।
 - \$1 pays for x to be moved in the future. 1263
 - ▶ \$1 pays for some other item to be moved. 繋別人存よ
- Suppose that the size of the table is *m* immediately after an expansion. ^{如 page 40} 的範句 換款室後沒有存款, m個 insertion後 大会面換款室
 Assume that the expansion used up all the credit, so that there's no
 - Assume that the expansion used up all the credit, so that there's no credit stored after the expansion.
 - Will expand again after another *m* insertions.
 - Each insertion will put \$1 on one of the *m* items that were in the table just after expansion and will put \$1 on the item inserted.
 - Have \$2m of credit by next expansion, when there are 2m items to move. Enough to pay for the expansion, with no credit left over!

²⁶ 每次存\$2, m個insert後有\$2m又可以換教室

Potential method $_{1/3}$

- Φ(T) = 2 · num[T] size[T] 健保局的存款
 - Initially, num[T] = size[T] = $0 \Rightarrow \Phi(T) = 0$.
 - ▶ Just after expansion, size[T] = 2 · num[T] ⇒ $\Phi(T) = 0$. 換款室後
 - ▶ Just before expansion, size[T] = num[T] ⇒ $\Phi(T)$ = num[T] 換 教室前 ⇒ have enough potential to pay for moving all items.
 - ▶ Always have $\Phi(T) \ge 0$. $num[T] \ge 1/2 \cdot size[T]$ $\Rightarrow 2 \cdot num[T] \ge size[T]$ $\Rightarrow \Phi(T) \ge 0$. ▲ Always have $\Phi(T) \ge 0$. 存款永遠為正 (建作来本能任) potential

Amortized cost of ith operation:

 $num_i = num[T]$ after *i*th operation, $size_i = size[T]$ after *i*th operation , $\Phi_i = \Phi$ after *i*th operation.

```
F款永遠為正
健保不能任
potential method:
step1: 確定 potential function
step2: 確定存款比 - 開始多
ッ重(D;)2重(Do) for all ~
step3: 將線交的(建保豊相加
step4: 全部(建保豊2全部花豊
ッ可知平均而言的花费
```

O有換教室 考慮2种情形的花费O没有換教室 ⇒2种都要線\$3 Potential method_{2/3}

• If no expansion: $size_i = size_{i-1}$, $num_i = num_{i-1} + 1$, $c_i = 1$. • If expansion: $size_i = size_{i-1}$, $num_i = num_{i-1} + 1$, $c_i = 1$. • If expansion: • If expansion

If expansion:

$$size_{i} = 2 \cdot size_{i-1},$$

$$size_{i-1} = num_{i-1} = num_{i} - 1,$$

$$c_{i} = num_{i-1} + 1 = num_{i}.$$

$$\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$= num_{i} + (2 \cdot num_{i} - size_{i}) - (2 \cdot num_{i-1} - size_{i-1})$$

$$= num_{i} + (2 \cdot num_{i} - 2(num_{i} - 1)) - (2(num_{i} - 1) - (num_{i} - 1))$$

$$= num_{i} + 2 - (num_{i} - 1)$$

$$= 3.$$

Potential method_{3/3}

- The above Figure plots the values of num_i , $size_i$, and Φ_i against *i*.
- Notice how the potential builds to pay for the expansion of the table.

Expansion and contraction_{1/2} 擴張 编编

• When α drops too low, contract the table.

- ► Allocate a new, smaller one.
 O C ≥ constant
- ▶ Copy all items.
 約4月2個性質 ⇒ 使用量要和size成常拉比
 ②健保不能太贵

⇒ amoritized cost ≤ constant

- Preserve two properties
 - load factor α bounded below by a positive constant, and
 - amortized cost per operation bounded above by a constant.

Obvious strategy

- ▶ Double size when inserting into a full table. 満 → 2 倍
- Halve size when deletion would make table less than half full.
- ▶ Then always have $1/2 \le \alpha \le 1$. 小 於 半 → 減 半

Expansion and contraction $_{2/2}$

Consider the following scenario

- The first n/2 operations are insertions, $\frac{1}{2}$ $\frac{1}{2}$
- For the second n/2 operations, we perform the following sequence: insert, delete, delete, insert, insert, delete, delete, insert, insert,...

最美的情形

• The cost of each expansion and contraction is $\Theta(n)$.

▶ The total cost of the *n* operations is $\Theta(n^2)$. → $n \cdot O(n) = O(n^2)$

Simple solution:

- ▶ Double size when inserting into a full table. 講→ 2 倍
- ▶ Halve size when deleting from a 1/4 full table. 剩 六 時 減半
- After either expansion or contraction, $\alpha = 1/2$.
- ► Always have $1/4 \le \alpha \le 1$. $\overline{\mathbf{P}}$ \mathbf{V} ($\mathbf{\Phi} \ne \mathbf{L} \le \alpha \le \mathbf{I}$

小观察1:在减半之前要delete-半 在 expansion前要增成2倍人校

Some properties $_{1/3}$

Observation 1:

- Need to delete half the items before contraction.
- Need to double number of items before expansion.

• Let
$$\Phi(T) = \begin{cases} 2 \cdot num[T] - size[T] & \text{if } \alpha \ge 1/2, \\ size[T]/2 - num[T] & \text{if } \alpha < 1/2. \end{cases}$$

•
$$T \text{ empty} \Rightarrow \Phi = 0.$$

▶
$$\alpha \ge 1/2 \Rightarrow \text{num} \ge 1/2 \cdot \text{size} \Rightarrow 2 \cdot \text{num} \ge \text{size} \Rightarrow \Phi \ge 0.$$

•
$$\alpha < 1/2 \Rightarrow \text{num} < 1/2 \cdot \text{size} \Rightarrow \Phi \ge 0.$$

'確定存款比-開始多

Some properties_{2/3}

The potential is never negative. Thus, the total amortized cost of a sequence of operations with respect to Φ is an upper bound on the actual cost of the sequence.

小現察2: Q=兰時, 沒credit,沒存款 Some properties_{3/3} 當Q=1要 double 或Q=去要減半時,

Observation 2:

都有足夠的 credit可以搬運

- $\alpha = 1/2 \implies \Phi = 2 \cdot \text{num} 2 \cdot \text{num} = 0.$
- $\bullet \alpha = 1 \implies \Phi = 2 \cdot \text{num} \text{num} = \text{num}.$
- ▶ $\alpha = 1/4 \implies \Phi = \text{size}/2 \text{num} = 4 \cdot \text{num}/2 \text{num} = \text{num}$.
- Therefore, when we double or halve, have enough potential to pay for moving all num items.
- Let c_i = actual cost of *i*th operation, \hat{c}_{i} = amortized cost of *i*th operation, num_i = the number of items after the *i*th operation, $size_i$ = the size of the table after the *i*th operation, α_i = the load factor of the table after the *i*th operation, Φ_i = the potential after the *i*th operation.

Analysis: insert operation $_{1/2}$

- Case 1: α_{i−1} ≥ 1/2
 - The same analysis as before.
 - The amortized cost $\hat{c}_i = 3$.

• Case 2: $\alpha_{i-1} < 1/2$ and $\alpha_i < 1/2$ (no expansion)

$$\hat{c}_{i} = c_{i} + \Phi_{i} + \Phi_{i-1} = 1 + (size_{i} / 2 - num_{i}) - (size_{i-1} / 2 - num_{i-1}) = 1 + (size_{i} / 2 - num_{i}) - (size_{i} / 2 - (num_{i} - 1)) = 0.$$

利用di-1的值,將 insertion 情況分3种

insert 之前小於는, insert 後不需換教室 Analysis: insert operation_{2/2}

• Case 3: $\alpha_{i-1} < 1/2$ and $\alpha_i \ge 1/2$ (no expansion)

$$\begin{aligned} \hat{c}_{i} &= 1 + \left(2 \cdot num_{i} - size_{i}\right) - \left(size_{i-1} / 2 - num_{i-1}\right) \\ &= 1 + \left(2 \left(num_{i-1} + 1\right) - size_{i-1}\right) - \left(size_{i-1} / 2 - num_{i-1}\right) \\ &= 3 \cdot num_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &= 3 \cdot \alpha_{i-1} size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &< \frac{3}{2} \cdot size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &= 3 . \end{aligned}$$

Therefore, amortized cost of insert is at most 3.

利用 Qi-1 的值將 delete 情形分為2种 _____

Analysis: delete operation $_{1/3}$

- ► Case 1: α_{i-1} < 1/2</p>
 - This implies $\alpha_i < 1/2$. delete $\frac{1}{2}$
 - ▶ If no contraction: 沒有举生縮減

$$\hat{c}_{i} = 1 + (size_{i} / 2 - num_{i}) - (size_{i-1} / 2 - num_{i-1}) = 1 + (size_{i} / 2 - num_{i}) - (size_{i} / 2 - (num_{i} + 1)) = 2.$$

▶ If contraction: 發生縮 減

$$\hat{c}_{i} = (num_{i}+1) + (size_{i} / 2 - num_{i}) - (size_{i-1} / 2 - num_{i-1})$$

move + delete

$$[size_{i} / 2 = size_{i-1} / 4 = num_{i-1} = num_{i} + 1]$$

$$= (num_{i} + 1) + ((num_{i} + 1) - num_{i}) - ((2 \cdot num_{i} + 2) - (num_{i} + 1))$$

$$= 1.$$

Analysis: delete operation $_{1/2}$

► Case 2: $\alpha_{i-1} \ge 1/2$ (No contraction happens)

• Case 2a:
$$\alpha_i \ge 1/2$$
:
 $\hat{c}_i = 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1})$
 $= 1 + (2 \cdot num_i - size_i) - (2 \cdot num_i + 2 - size_i)$
 $= -1$.

• Case 2b:
$$\alpha_i < 1/2$$
:
Since $\alpha_{i-1} \ge 1/2$, we have
 $num_i = num_{i-1} - 1 \ge \frac{1}{2} \cdot size_{i-1} - 1 = \frac{1}{2} \cdot size_i - 1$.
Thus, $\hat{c}_i = 1 + (size_i/2 - num_i) - (2 \cdot num_{i-1} - size_{i-1})$
 $= 1 + (size_i/2 - num_i) - (2 \cdot num_{i-1} - size_i)$
 $= -1 + \frac{3}{2} \cdot size_{i-1} - 3 \cdot num_i$
 $\le -1 + \frac{3}{2} \cdot size_{i-1} - 3 \left(\frac{1}{2} \cdot size_{i-1} - 1\right)$
 $= 2$.

Summary

- Therefore, amortized cost of delete is at most 2.
- delete 1建保最多付\$2
 The amortized cost of each operation is bounded above by a constant.
- The actual time for any sequence of *n* operations on a dynamic table is O(n). n個 operations 最多付 O(n)元

Insertion Only ($\alpha \ge 1/2$)

Delection Only ($\alpha \le 1/2$)

