

NP and Computational Intractability

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

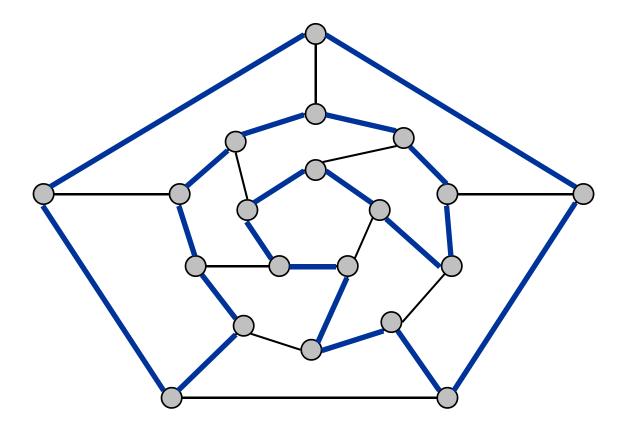
8.5 Sequencing Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

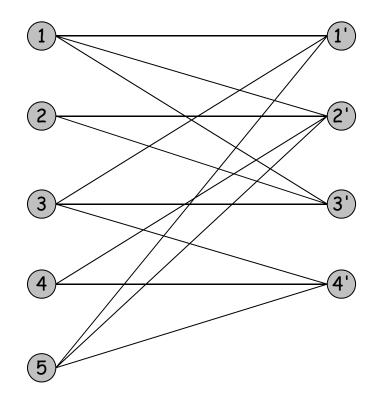
HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.



YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.



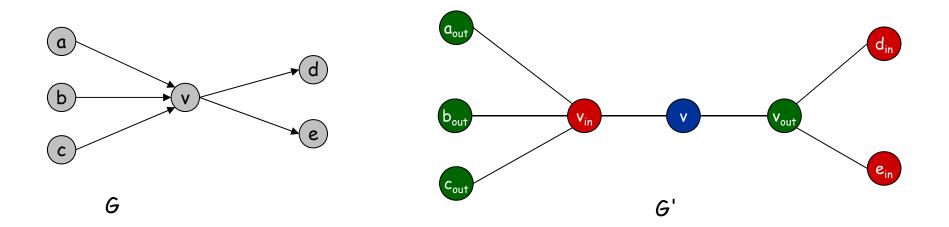
NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE \leq_{P} HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.



Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

$\mathsf{Pf.}\,\Rightarrow\,$

- . Suppose G has a directed Hamiltonian cycle $\Gamma.$
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. ⇐

- Suppose G' has an undirected Hamiltonian cycle $\Gamma'.$
- . Γ' must visit nodes in G' using one of following two orders:
 - $\dots, B, G, R, B, G, R, B, G, R, B, \dots$

..., B, R, G, B, R, G, B, R, G, B, ...

- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. \cdot

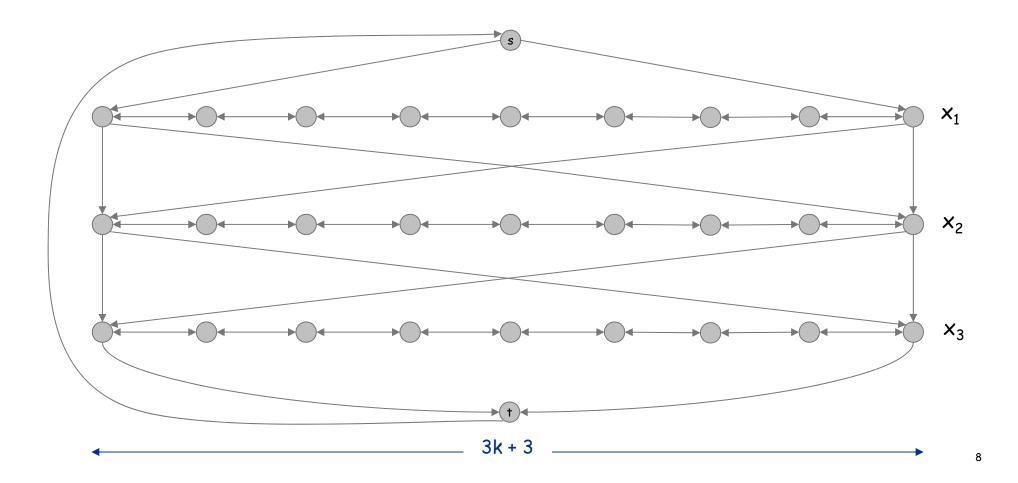
Claim. $3-SAT \leq_{P} DIR-HAM-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments.

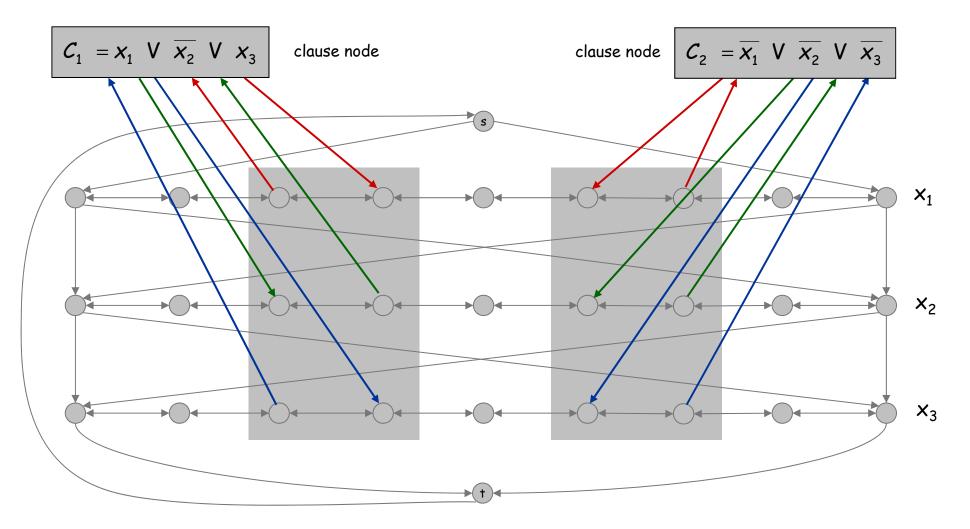
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2ⁿ Hamiltonian cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.



Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

• For each clause: add a node and 6 edges.



Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

$\mathsf{Pf.}\,\Rightarrow\,$

- Suppose 3-SAT instance has satisfying assignment x^* .
- Then, define Hamiltonian cycle in G as follows:
 - if $x_i^* = 1$, traverse row i from left to right
 - if $x_i^* = 0$, traverse row i from right to left
 - for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

$\mathsf{Pf.} \Leftarrow$

- . Suppose G has a Hamiltonian cycle $\Gamma.$
- If Γ enters clause node C_i , it must depart on mate edge.
 - thus, nodes immediately before and after C_j are connected by an edge e in G
 - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on $G - \{C_j\}$
- Continuing in this way, we are left with Hamiltonian cycle Γ' in $G \{C_1, C_2, \ldots, C_k\}$.
- Set $x_i^* = 1$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node $C_{\rm j}$, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

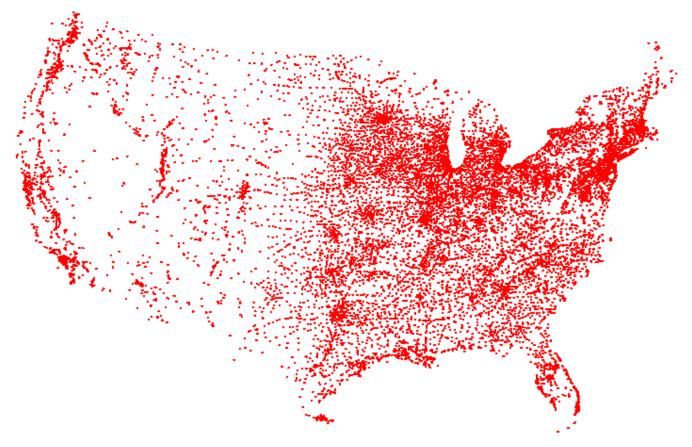
LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim. $3-SAT \leq_{P} LONGEST-PATH$.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. Pf 2. Show HAM-CYCLE \leq_{P} LONGEST-PATH.

Traveling Salesperson Problem

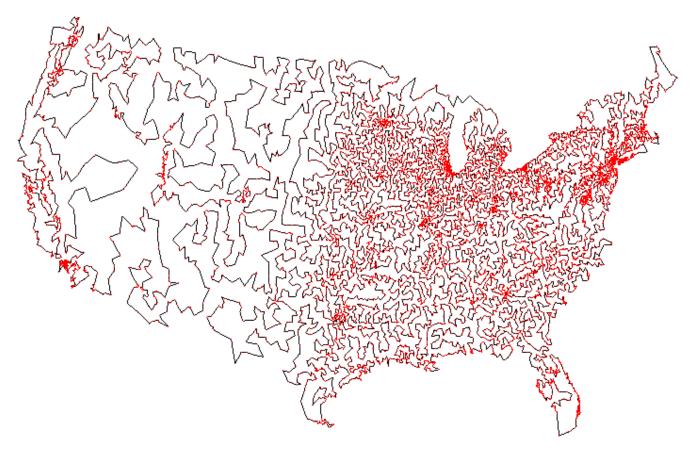
TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



Optimal TSP tour Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

```
Claim. HAM-CYCLE \leq_{P} TSP. Pf.
```

• Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function $\begin{bmatrix} 1 & \text{if } (u, v) \\ 0 & 0 \end{bmatrix} \in F$

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

• TSP instance has tour of length \leq n iff G is Hamiltonian.

8.6 Partitioning Problems

Basic genres.

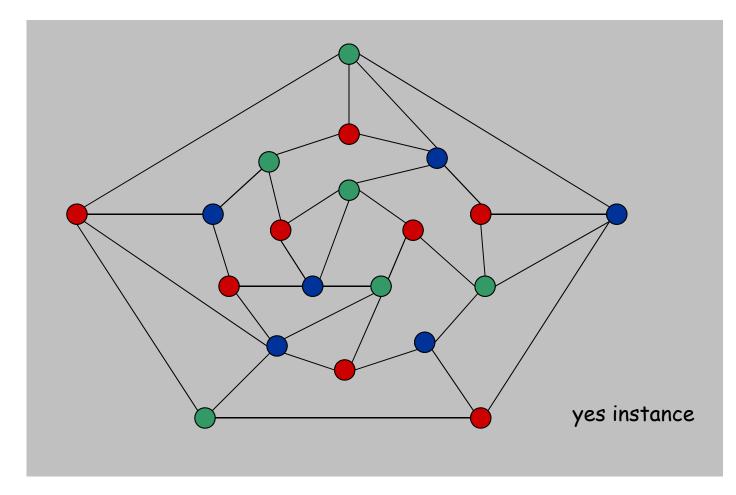
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

8.7 Graph Coloring

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?



Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_{P} k-REGISTER-ALLOCATION for any constant $k \geq 3$.

Claim. $3-SAT \leq P 3$ -COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

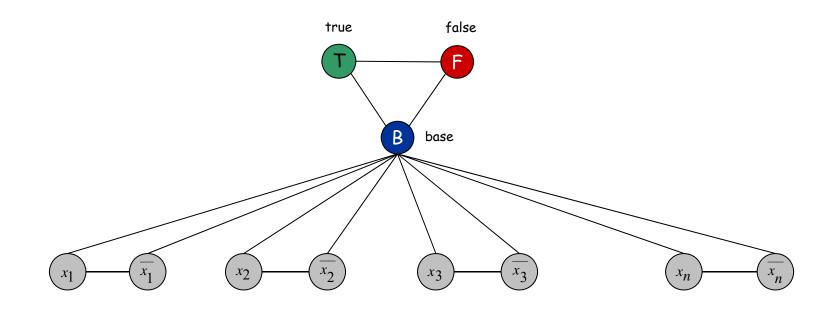
- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

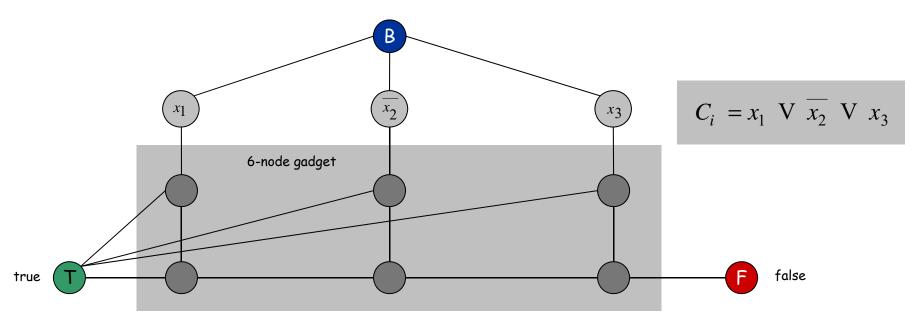
- Consider assignment that sets all T literals to true.
- . (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.



Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

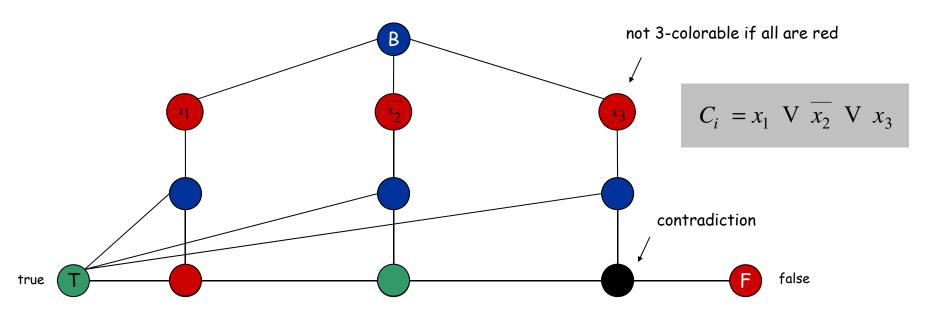
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.
- . (iv) ensures at least one literal in each clause is T.



Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

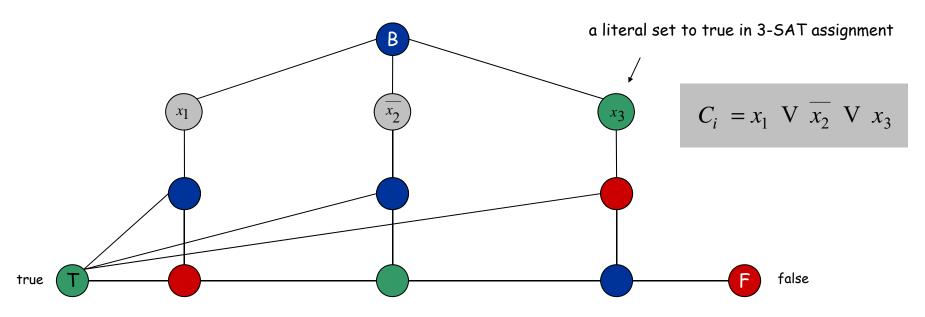
- Consider assignment that sets all T literals to true.
- . (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.
- . (iv) ensures at least one literal in each clause is T.

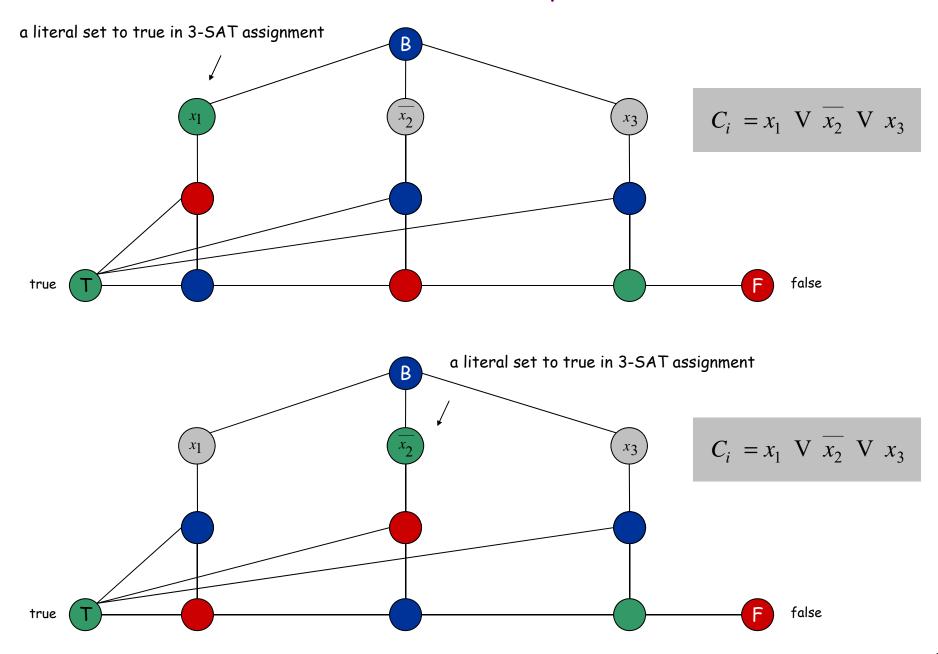


Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable.

- Color all true literals T.
- Color a node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced. •





8.8 Numerical Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754. Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Claim. $3-SAT \leq_{P} SUBSET-SUM$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

X

• Include one digit for each variable xi and for each clause C_{i} .

to sum to 4

- Include two numbers for each variable x_i .
- Include two numbers for each clause C_{i} .
- Sum of each x_i digit is 1;
- sum of each C_i digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

$$C_1 = \neg x_1 \lor x_2 \lor x_3$$

$$C_2 = x_1 \lor \neg x_2 \lor x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

3-SAT instance

 \mathcal{C}_1 C_2 \mathcal{C}_3 Y 100,010 X_1 $\neg X_1$ 100,101 X_2 10,100 $\neg X_2$ 10,011 X_3 1,110 ¬ X₃ 1,001 dummies to get clause columns W 111,444 SUBSET-SUM instance

Ζ

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Rightarrow Suppose Φ is satisfiable.

- Choose integers corresponding to each true literal.
- . Since Φ is satisfiable, each \textit{C}_{j} digit sums to at least 1 from x_{i} rows.

 Choose dummy integers to make clause digits sum to 4.

	×	У	z	C_1	<i>C</i> ₂	<i>C</i> ₃				
x ₁	1	0	0	0	1	0	100,010			
$\neg x_1$	1	0	0	1	0	1	100,101			
x ₂	0	1	0	1	0	0	10,100			
¬ X ₂	0	1	0	0	1	1	10,011			
x ₃	0	0	1	1	1	0	1,110			
¬ X ₃	0	0	1	0	0	1	1,001			
dummies to get clause columns to sum to 4	0	0	0	1	0	0	100			
	0	0	0	2	0	0	200			
	0	0	0	0	1	0	10			
	0	0	0	0	2	0	20			
	0	0	0	0	0	1	1			
	0	0	0	0	0	2	2			
W	1	1	1	4	4	4	111,444			
SUBSET-SUM instance										

$$C_1 = \neg x_1 \lor x_2 \lor x_3$$

$$C_2 = x_1 \lor \neg x_2 \lor x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

3-SAT instance

SUBSEI-SUM INSTANCE

Lemma. Φ is satisfiable iff there exists a subset that sums to W. Pf. \Leftarrow Suppose there is a subset that sums to W.

- Digit x_i forces subset to select either row x_i or $\neg x_i$ (but not both).
- Digit C_{i} forces subset to select at least one literal in clause.
- Assign x_i = true iff row x_i selected. •

	×	У	z	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃				
× ₁	1	0	0	0	1	0	100,010			
$\neg x_1$	1	0	0	1	0	1	100,101			
x ₂	0	1	0	1	0	0	10,100			
¬ X ₂	0	1	0	0	1	1	10,011			
× ₃	0	0	1	1	1	0	1,110			
¬ X ₃	0	0	1	0	0	1	1,001			
dummies to get clause columns to sum to 4	0	0	0	1	0	0	100			
	0	0	0	2	0	0	200			
	0	0	0	0	1	0	10			
	0	0	0	0	2	0	20			
	0	0	0	0	0	1	1			
	0	0	0	0	0	2	2			
W	1	1	1	4	4	4	111,444			
SUBSET-SUM instance										

$$C_1 = \neg x_1 \lor x_2 \lor x_3$$

$$C_2 = x_1 \lor \neg x_2 \lor x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

3-SAT instance

30

Polynomial-Time Reductions

