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8.3  Definition of NP



3

Decision Problems

Decision problem.
n X is a set of strings.
n Instance:  string s.
n Algorithm A solves problem X:  A(s) = yes iff s ∈ X.

Polynomial time.  Algorithm A runs in poly-time if for every string s, 
A(s) terminates in at most p(|s|) "steps", where p(⋅) is some polynomial. 

PRIMES:  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }
Algorithm.  [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s



4

Definition of P

P.  Decision problems for which there is a poly-time algorithm.

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y? Grade school 
division 51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51
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NP

Certification algorithm intuition.
n Certifier views things from "managerial" viewpoint.
n Certifier doesn't determine whether s ∈ X  on its own;

rather, it checks a proposed proof t that s ∈ X.

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,  
s ∈ X  iff there exists a string t such that C(s, t) = yes.

NP.  Decision problems for which there exists a poly-time certifier.

Remark.  NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and
|t| ≤ p(|s|) for some polynomial p(⋅).

"certificate" or "witness"



6

Certifiers and Certificates:  Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate 
exists iff s is composite.  Moreover |t| ≤ |s|.

Certifier.  

Instance.  s = 437,669.
Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541 × 809

boolean C(s, t) {
if (t ≤ 1 or t ≥ s)

return false
else if (s is a multiple of t)

return true
else 

return false
}
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Certifiers and Certificates:  3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in Φ has at least one true literal.

Ex.

Conclusion.  SAT is in NP.

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( ) ∧ x1  ∨ x3  ∨ x4( )

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t
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Certifiers and Certificates:  Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 
simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 
once, and that there is an edge between each pair of adjacent nodes in 
the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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P, NP, EXP
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The Main Question:  P Versus NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
n Is the decision problem as easy as the certification problem?
n Clay $1 million prize.

If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP?  Probably no.

EXP NP

P

If  P ≠ NP If  P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)



11

The Simpson's:  P = NP?

Copyright © 1990, Matt Groening
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Futurama:  P = NP?

Copyright © 2000, Twentieth Century Fox
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Looking for a Job?

Some writers for the Simpsons and Futurama.
n J. Steward Burns.  M.S. in mathematics, Berkeley, 1993.
n David X. Cohen.  M.S. in computer science, Berkeley, 1992.
n Al Jean.  B.S. in mathematics, Harvard, 1981.
n Ken Keeler.  Ph.D. in applied mathematics, Harvard, 1990.
n Jeff Westbrook.  Ph.D. in computer science, Princeton, 1989.



8.4  NP-Completeness
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Polynomial Transformation

Def.  Problem X polynomial reduces (Cook) to problem Y if arbitrary 
instances of problem X can be solved using:

n Polynomial number of standard computational steps, plus
n Polynomial number of calls to oracle that solves problem Y.
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NP-Complete

NP-complete.  A problem Y in NP with the property that for every 
problem X in NP, X ≤ p Y.

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in 
poly-time iff P = NP.
Pf.  ⇐ If P = NP then Y can be solved in poly-time since Y is in NP.
Pf.   Suppose Y can be solved in poly-time.

n Let X be any problem in NP.  Since X ≤ p Y, we can solve X in
poly-time. This implies NP  ⊆ P.

n We already know P  ⊆ NP. Thus P = NP. ▪

Fundamental question.  Do there exist "natural" NP-complete problems?



17

∧

¬

∧ ∨

∧

∨

1 0 ? ? ?

output

inputshard-coded inputs

yes:  1 0 1

Circuit Satisfiability

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT
gates, is there a way to set the circuit inputs so that the output is 1?
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sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem.  CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf.  (sketch)

n Any algorithm that takes a fixed number of bits n as input and 
produces a yes/no answer can be represented by such a circuit.
Moreover, if algorithm takes poly-time, then circuit is of poly-size.

n Consider some problem X in NP.  It has a poly-time certifier C(s, t).
To determine whether s is in X, need to know if there exists a 
certificate t of length p(|s|) such that C(s, t) = yes.

n View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) 
and convert it into a poly-size circuit K.

– first |s| bits are hard-coded with s
– remaining p(|s|) bits represent bits of t

n Circuit K is satisfiable iff C(s, t) = yes.



Ex.  Construction below creates a circuit K whose inputs can be set so 
that K outputs true iff graph G has an independent set of size ≥ 2.
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Establishing NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
n Step 1.  Show that Y is in NP.
n Step 2.  Choose an NP-complete problem X.
n Step 3.  Prove that X ≤ p Y.

Justification.  If X is an NP-complete problem, and Y is a problem in NP 
with the property that X ≤ P Y then Y is NP-complete.

Pf.  Let W be any problem in NP.  Then W  ≤ P  X   ≤ P Y.
n By transitivity, W ≤ P Y. 
n Hence Y is NP-complete.  ▪ by assumptionby definition of

NP-complete
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3-SAT is NP-Complete

Theorem.  3-SAT is NP-complete.
Pf.  Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP.

n Let K be any circuit.
n Create a 3-SAT variable xi for each circuit element i.
n Make circuit compute correct values at each node:

– x2 = ¬ x3  add 2 clauses:
– x1 = x4 ∨ x5    add 3 clauses:
– x0 = x1 ∧ x2    add 3 clauses:

– p → q ⇔ ¬ p ∨ q
– p ↔ q ⇔ (p → q) ∧ (q → p) ⇔ (¬ p ∨ q) ∧ (¬ q ∨ p)
– ¬ (p ∨ q) ⇔ ¬ p ∧ ¬ q     (DeMorgan’s  Law)
– p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)  (Distributive Law) 

– x1 = x4 ∨ x5

⇔ (x1 ∨ (x4 ∨ x5)) ∧ (x1 ∨ (x4 ∨ x5))
⇔ (x1 ∨ (x4 ∧ x5)) ∧ (x1 ∨ (x4 ∨ x5))
⇔ (x1 ∨ x4 ) ∧ (x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x5)

∨

∧

¬

0 ? ?

output

x0

x2x1

 x2 ∨ x3  , x2 ∨ x3

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3x4x5
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n Hard-coded input values and output value.
– x5 = 0   add 1 clause:
– x0 = 1   add 1 clause:

n Turn clauses of length 1 or 2 into clauses of length 3.▪
– Create four new variables z1, z2, z3, and z4.
– Add 8 clauses to force z1 = z2 = false:

– Replace any clause with a single term ( ti ) with ( ti ∨ z1 ∨ z2 ).
– Replace any clause with two terms ( ti ∨ tj ) with ( ti ∨ tj ∨ z1 ).

∨

∧

¬

0 ? ?

output

x0

x2x1

x3x4x5

 x5

 x0
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3-satisfiability is NP-complete

Lemma. Φ is satisfiable iff the inputs of K can be set so that it outputs 1.

Pf.  
⇐

n Suppose there are inputs of K that make it output 1.
n Can propagate input values to create values at all nodes of K. 
n This set of values satisfies Φ.


n Suppose Φ is satisfiable.
n We claim that the set of values corresponding to the circuit inputs

constitutes a way to make circuit K output 1.
n The 3-SAT clauses were designed to ensure that the values

assigned to all node in K exactly match what the circuit
would compute for these nodes. ▪
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Observation.  All problems below are NP-complete and polynomial 
reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
n Packing problems:  SET-PACKING, INDEPENDENT SET.
n Covering problems:  SET-COVER, VERTEX-COVER.
n Constraint satisfaction problems:  SAT, 3-SAT.
n Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
n Partitioning problems: 3D-MATCHING 3-COLOR.
n Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism, Nash equilibrium.
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Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 
n Prime intellectual export of CS to other disciplines.
n 6,000 citations per year (title, abstract, keywords).

– more than "compiler", "operating system", "database"
n Broad applicability and classification power.
n "Captures vast domains of computational, scientific, mathematical 

endeavors, and seems to roughly delimit what mathematicians and 
scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
n 1926:  Ising introduces simple model for phase transitions.
n 1944:  Onsager solves 2D case in tour de force.
n 19xx:  Feynman and other top minds seek 3D solution.
n 2000:  Istrail proves 3D problem NP-complete.
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.
Biology:  protein folding.
Chemical engineering:  heat exchanger network synthesis.
Civil engineering:  equilibrium of urban traffic flow.
Economics:  computation of arbitrage in financial markets with friction.
Electrical engineering:  VLSI layout. 
Environmental engineering:  optimal placement of contaminant sensors.
Financial engineering:  find minimum risk portfolio of given return.
Game theory:  find Nash equilibrium that maximizes social welfare.
Genomics:  phylogeny reconstruction.
Mechanical engineering:  structure of turbulence in sheared flows.
Medicine:  reconstructing 3-D shape from biplane angiocardiogram.
Operations research:  optimal resource allocation. 
Physics:  partition function of 3-D Ising model in statistical mechanics.
Politics:  Shapley-Shubik voting power.
Pop culture:  Minesweeper consistency.
Statistics:  optimal experimental design.



8.9  co-NP and the Asymmetry of NP
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Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1.  SAT vs. TAUTOLOGY.
n Can prove a CNF formula is satisfiable by giving such an assignment.
n How could we prove that a formula is not satisfiable? 

Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.
n Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
n How could we prove that a graph is not Hamiltonian?

Remark.  SAT is NP-complete and SAT ≡ P TAUTOLOGY, but how do we 
classify TAUTOLOGY?

not even known to be in NP
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NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.
Ex.  SAT, HAM-CYCLE, COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem 
with the yes and no answers reverse.

Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }
Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.
Ex.  TAUTOLOGY, NO-HAM-CYCLE, PRIMES.
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Fundamental question.  Does NP = co-NP?
n Do yes instances have succinct certificates iff no instances do?
n Consensus opinion:  no.

Theorem.  If NP ≠ co-NP, then P ≠ NP.
Pf idea.

n P is closed under complementation.
n If P = NP, then NP is closed under complementation.
n In other words, NP = co-NP.
n This is the contrapositive of the theorem.

NP = co-NP ?
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Good Characterizations

Good characterization.  [Edmonds 1965]   NP   co-NP.
n If problem X is in both NP and co-NP, then:

– for yes instance, there is a succinct certificate
– for no instance, there is a succinct disqualifier

n Provides conceptual leverage for reasoning about a problem.

Ex.  Given a bipartite graph, is there a perfect matching.
n If yes, can exhibit a perfect matching.
n If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good Characterizations

Observation.  P ⊆ NP   co-NP.
n Proof of max-flow min-cut theorem led to stronger result that max-

flow and min-cut are in P.
n Sometimes finding a good characterization seems easier than 

finding an efficient algorithm.

Fundamental open question.  Does P = NP   co-NP?
n Mixed opinions.
n Many examples where problem found to have a non-trivial good 

characterization, but only years later discovered to be in P.
– linear programming [Khachiyan, 1979]
– primality testing [Agrawal-Kayal-Saxena, 2002]

Fact.  Factoring is in NP   co-NP, but not known to be in P.

if poly-time algorithm for factoring,
can break RSA cryptosystem
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PRIMES is in NP ∩ co-NP

Theorem.  PRIMES is in NP ∩ co-NP.
Pf.  We already know that PRIMES is in co-NP, so it suffices to prove 
that PRIMES is in NP.

Pratt's Theorem.  An odd integer s is prime iff there exists an integer 
1 < t < s  s.t. t s−1 ≡ 1 (mod s)

t (s−1) / p ≠ 1 (mod s)
for all prime divisors p of s-1

Certifier.
- Check s-1 = 2 × 2 × 3 × 36,473.
- Check 17s-1 = 1 (mod s).
- Check 17(s-1)/2 ≡ 437,676 (mod s).
- Check 17(s-1)/3 ≡ 329,415 (mod s).
- Check 17(s-1)/36,473 ≡ 305,452 (mod s).

Input.  s = 437,677
Certificate.  t = 17, 22 × 3 × 36,473

prime factorization of s-1
also need a recursive certificate
to assert that 3 and 36,473 are prime

use repeated squaring
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FACTOR is in NP ∩ co-NP

FACTORIZE.  Given an integer x, find its prime factorization.
FACTOR.  Given two integers x and y, does x have a nontrivial factor 
less than y?

Theorem.  FACTOR ≡ P FACTORIZE.

Theorem.  FACTOR is in NP ∩ co-NP.
Pf.

n Certificate:  a factor p of x that is less than y.
n Disqualifier:  the prime factorization of x (where each prime factor 

is less than y), along with a certificate that each factor is prime.
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Primality Testing and Factoring

We established:  PRIMES ≤ P COMPOSITES ≤ P FACTOR.

Natural question:  Does FACTOR ≤ P PRIMES ?
Consensus opinion.  No.

State-of-the-art.
n PRIMES is in P.
n FACTOR not believed to be in P.

RSA cryptosystem.
n Based on dichotomy between complexity of two problems.
n To use RSA, must generate large primes efficiently.
n To break RSA, suffixes to find efficient factoring algorithm.

proved in 2001
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Princeton CS Building, West Wall
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Princeton CS Building, West Wall
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A Note on Terminology

Knuth. [SIGACT News 6, January 1974, p. 12 – 18]

Find an adjective x that sounds good in sentences like.
n EUCLIDEAN-TSP is x.
n It is x to decide whether a given graph has a Hamiltonian cycle.
n It is unknown whether FACTOR is an x problem.

Note:  x does not necessarily imply that a problem is in NP, just that 
every problem in NP polynomial reduces to x.
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A Note on Terminology

Knuth's original suggestions.
n Hard.
n Tough.
n Herculean.
n Formidable.
n Arduous.

Some English word write-ins.
n Impractical.
n Bad.
n Heavy.
n Tricky.
n Intricate.
n Prodigious.
n Difficult.
n Intractable.
n Costly.
n Obdurate.
n Obstinate.
n Exorbitant.
n Interminable.

but Hercules known
for strength not time
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A Note on Terminology

Hard-boiled.  [Ken Steiglitz]  In honor of Cook.

Hard-ass.  [Al Meyer]  Hard as satisfiability.

Sisyphean.  [Bob Floyd]  Problem of Sisyphus was time-consuming.

Ulyssean.  [Don Knuth]  Ulysses was known for his persistence.

but Sisyphus never finished his task

and finished!
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A Note on Terminology:  Made-Up Words

Supersat.  [Al Meyer]  Greater than or equal to satisfiability.

Polychronious.  [Ed Reingold]  Enduringly long; chronic.

PET.  [Shen Lin]  Probably exponential time.

GNP.  [Al Meyer]  Greater than or equal to NP in difficulty.

depending on P=NP conjecture:  provably exponential time,
or previously exponential time

like today's lecture

costing more than GNP to resolve
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A Note on Terminology:  Consensus

NP-complete.  A problem in NP such that every problem in NP polynomial 
reduces to it.

NP-hard.  [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]
A decision problem such that every problem in NP reduces to it.

NP-hard search problem.  A problem such that every problem
in NP reduces to it.

"creative research workers are as full of ideas 
for new terminology as they are empty of 
enthusiasm for adopting it."  -Don Knuth

not necessarily in NP

not necessarily a yes/no problem


