
AlgorithmsChapter 33Computational Geometry
Department of Computer Science and EngineeringNational Taiwan Ocean University

Associate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.com

Outline
 Line-segment properties
 Determining whether any pair of segments intersects
 Finding the convex hull
 Finding the closest pair of points

2

Overview
 Computational geometry: study algorithms for solving

geometric problems such as
 computer graphics,
 robotics,
 VLSI design, and
 computer aided design.

 In this chapter, each input object is represented as a set of
points {p1, p2, p3,...}, where each pi = (xi, yi) and xi, yi ∈R.
 For example, an n-vertex polygon P = <p0, p1, p2,..., pn− 1>.

3

Line-segment properties
 A convex combination of two distinct points p1 = (x1, y1) and

p2 = (x2, y2) is any point p3 = (x3, y3) such that for some α in the
range 0 ≤ α ≤ 1, we have
 x3 = αx1 + (1 − α)x2, and
 y3 = αy1 + (1 − α)y2.

 We also write that p3 = αp1 + (1 − α)p2.

 The line segment 𝑝ଵ𝑝ଶ is the set of convex combinations of p1
and p2.

 We call p1 and p2 the endpoints of segment 𝑝ଵ𝑝ଶ.

 If p1 is the origin (0, 0), then we can treat the directed segment𝑝ଵ𝑝ଶ as the vector p2.
4

 Consider vectors p1 and p2. The cross product p1 × p2 of p1 and p2
is the signed area of the parallelogram formed by the points
(0, 0), p1, p2, and p1 + p2 = (x1 + x2, y1 + y2).

 An equivalent definition:

Cross products

5

 Question 1: Given two vectors p1 and p2, is p1 clockwise from
p2 with respect to their common endpoint p0? If p1 × p2 is
 positive, then p1 is clockwise from p2.
 negative, then p1 is counterclockwise from p2.
 0, then the vectors are collinear, pointing in either the same or

opposite directions.

Clockwise, counterclockwise, or collinear ?

6

clockwise
counterclockwise

Turn left or right ?

 Question 2: Given two line segments 𝑝଴𝑝ଵ and 𝑝ଵ𝑝ଶ, if we
traverse 𝑝଴𝑝ଵ and then 𝑝ଵ𝑝ଶ, do we make a left turn at
point p1?
 Check whether 𝑝଴𝑝ଶ is clockwise or counterclockwise relative

to 𝑝଴𝑝ଵ.
 If counterclockwise, the points make a left turn.
 If clockwise, they make a right turn.

7

Whether two line segments intersect ?
 Question 3: Do line segments 𝑝଴𝑝ଵ and 𝑝ଵ𝑝ଶ intersect ?

 A segment 𝑝ଵ𝑝ଶ straddles a line if point p1 lies on one side
of the line and point p2 lies on the other side.
 A boundary case arises if p1 or p2 lies directly on the line.

 Two line segments intersect if and only if either (or both) of
the following conditions holds:
 Each segment straddles the line containing the other.
 An endpoint of one segment lies on the other segment.

(This condition comes from the boundary case.)

8

Pseudocode

9

SEGMENTS-INTERSECT(p1, p2, p3, p4)
1. d1 ← DIRECTION(p3, p4, p1)
2. d2 ← DIRECTION(p3, p4, p2)
3. d3 ← DIRECTION(p1, p2, p3)
4. d4 ← DIRECTION(p1, p2, p4)
5. if ((d1 > 0 and d2 < 0) or (d1 < 0 and d2 > 0)) and

((d3 > 0 and d4 < 0) or (d3 < 0 and d4 > 0))
6. return TRUE
7. elseif d1 = 0 and ON-SEGMENT(p3, p4, p1)
8. return TRUE
9. elseif d2 = 0 and ON-SEGMENT(p3, p4, p2)
10. return TRUE
11. elseif d3 = 0 and ON-SEGMENT(p1, p2, p3)
12. return TRUE
13. elseif d4 = 0 and ON-SEGMENT(p1, p2, p4)
14. return TRUE
15. else return FALSE

ON-SEGMENT (pi, pj, pk)
1. if min(xi, xj) ≤ xk ≤ max(xi, xj) and

min(yi, yj) ≤ yk ≤ max(yi, yj)
2. return TRUE
3. else return FALSE

DIRECTION(pi, pj, pk)
1. return (pk − pi) × (pj − pi)

• Two line segments intersect if and only if conditions (a) or (c) holds.
• In (b), segment 𝑝ଷ𝑝ସ straddles the line containing 𝑝ଵ𝑝ଶ, but segment 𝑝ଵ𝑝ଶ

does not straddle the line containing 𝑝ଷ𝑝ସ .
• In (d), p3 is collinear with 𝑝ଵ𝑝ଶ, but it is not between p1 and p2. The

segments do not intersect.

Outline
 Line-segment properties
 Determining whether any pair of segments intersects
 Finding the convex hull
 Finding the closest pair of points

11

Determining if two line segments intersect ?
 This section presents an algorithm for determining whether any

two line segments in a set of segments intersect.

 The algorithm uses a technique known as sweeping.

 The algorithm runs in O(n lgn) time, where n is the number of
segments we are given.

 In sweeping, an imaginary vertical sweep line passes through
the given set of geometric objects, usually from left to right.

 We assume that
 no input segment is vertical; and
 no three input segments intersect at a single point.

12

Ordering segments & Moving the sweep line1/2
 Two segments s1 and s2, are comparable at x if the vertical

sweep line with x-coordinate x intersects both of them.
 We say that s1 is above s2 at x, written s1 ≥x s2, if
 the intersection of s1 with the sweep line at x is higher than the

intersection of s2 with the same sweep line; or
 if s1 and s2 intersect at the sweep line.

 Sweeping algorithms typically manage two sets of data:
 The sweep-line status gives the relationships among the objects

intersected by the sweep line.
 The event-point schedule is a sequence of points, called event

point, ordered from left to right, that defines the halting positions of
the sweep line.

13

Ordering segments & Moving the sweep line2/2

 In (a), we have
 a ≥r c, a ≥t b, b ≥t c, a ≥t c, and b ≥u c.
 segment d is comparable with no other segment shown.

 In (b), one can see that
 when segments e and f intersect, their orders are reversed: we have

e ≥v f but f ≥w e.

14

Event-point schedule & Sweep-line status
 Event-point schedule:
 Each segment endpoint is an event point.
 We sort the segment endpoints by increasing x-coordinate and

proceed from left to right.

 When we encounter a segment’s
 Left endpoint: insert the segment into the sweep-line status;
 Right endpoint: delete the segment into the sweep-line status.

 Whenever two segments first become consecutive, we check
whether they intersect.

15

Operations for sweep-line status
 We require the following operations for sweep-line status T:
 INSERT(T, s): insert segment s into T.
 DELETE(T, s): delete segment s from T.
 ABOVE(T, s): return the segment immediately above segment s in T.
 BELOW(T, s): return the segment immediately below segment s in T.

 Each of the above operations can be performed in O(lgn) time
using red-black trees.

 Recall that the red-black-tree operations in Chapter 13 involve
comparing keys.
 We can replace the key comparisons by comparisons that use cross

products to determine the relative ordering of two segments (see
Exercise 33.2-2).

16

Segment-intersection pseudocode

17

ANY-SEGMENTS-INTERSECT(S)
1. T ← Ø
2. sort the endpoints of the segments in S from left to right,

breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower
y-coordinates first

3. for each point p in the sorted list of endpoints
4. if p is the left endpoint of a segment s
5. INSERT(T, s)
6. if (ABOVE(T, s) exists and intersects s)

or (BELOW(T, s) exists and intersects s)
7. return TRUE
8. if p is the right endpoint of a segment s
9. if both ABOVE(T, s) and BELOW(T, s) exist

and ABOVE(T, s) intersects BELOW(T, s)
10. return TRUE
11. DELETE(T, s)
12. return FALSE

O(n logn)

2n·(O(logn)+O(1))

Time complexity: O(n logn)

The execution of ANY-SEGMENTS-INTERSECT

 Each dashed line is the sweep line at an event point.

 The intersection of segments d and b is found when segment
c is deleted.

18

Outline
 Line-segment properties
 Determining whether any pair of segments intersects
 Finding the convex hull
 Finding the closest pair of points

19

Finding the convex hull
 The convex hull of a set Q of points is the smallest convex

polygon P for which each point in Q is either on the boundary of
P or in its interior.

 Two algorithms:
 Graham's scan, runs in O(n lgn) time, n is the number of points.
 Jarvis's march, runs in O(nh) time, where h is the number of vertices

of the convex hull.

20

Graham's scan
 Both Graham's scan and Jarvis's march use a technique called

rotational sweep, processing vertices in the order of the polar
angles.

 Graham's scan :
 By maintaining a stack S of candidate points.
 Each point of the input set Q is pushed once onto the stack.
 The points that are not vertices of CH(Q) are eventually popped

from the stack.
 When the algorithm terminates, stack S contains exactly the vertices

of CH(Q).

21

Graham's scan pseudocode

22

GRAHAM-SCAN(Q)
1. let p0 be the point in Q with the minimum y-coordinate,

or the leftmost such point in case of a tie
2. let (p1, p2,..., pm) be the remaining points in Q,

sorted by polar angle in counterclockwise order around p0
(if more than one point has the same angle, remove all but
the one that is farthest from p0)

3. let S be an empty stack
4. PUSH(p0, S)
5. PUSH(p1, S)
6. PUSH(p2, S)
7. for i ← 3 to m
8. while the angle formed by points NEXT-TO-TOP(S), TOP(S),

and pi makes a nonleft turn
9. POP(S)
10. PUSH(pi, S)
11. return S

O(n)

Time complexity: O(n logn)

O(1)

O(n logn)

O(n)

In (h), the right turn at angle ∠p7p8p9 causes p8 to be popped, and then the
right turn at angle ∠p6p7p9 causes p7 to be popped.

Jarvis's march1/2
 Jarvis's march computes the convex hull of a set Q of points by a

technique known as package wrapping (or gift wrapping).

 Jarvis's march :
 Find the lowest point p0 and the highest point pk.
 Construct the right chain of CH(Q).

 We start with p0, the next convex hull vertex p1 has the smallest polar
angle with respect to p0.

 Similarly, p2 has the smallest polar angle with respect to p1, and so on.
 When we reach the highest vertex pk, we have constructed the right

chain of CH(Q).
 Construct the left chain of CH(Q) similarly.

25

Jarvis's march2/2

 Time complexity: O(nh), where h is the # of vertices of CH(Q).
 Each comparison between polar angles takes O(1) time.

26

Outline
 Line-segment properties
 Determining whether any pair of segments intersects
 Finding the convex hull
 Finding the closest pair of points

27

Finding the closest pair of points
 Consider the problem of finding the closest pair of points in

a set Q of n ≥ 2 points.
 "Closest" refers to the usual euclidean distance: the distance

between points p1 = (x1, y1) and p2 = (x2, y2) is

 A brute-force algorithm simply looks at all the pairs of
points.

 In this section, we shall describe a divide-and-conquer
algorithm whose running time is described by the familiar
recurrence T(n) = 2T(n/2) + O(n).

 Thus, this algorithm uses only O(n lgn) time.

28

.)()(2
21

2
21 yyxx −+−









2
n

The divide-and-conquer algorithm1/3
 The input of each recursive:
 P ⊆ Q.
 X : contains all the points in P and the points is sorted by

monotonically increasing x-coordinates.
 Y : contains all the points in P and the points is sorted by

monotonically increasing y-coordinates.

 If |P| ≤ 3, perform the brute-force method.
 If |P| > 3, recursive invocation carries out the divide-and-

conquer paradigm as follows.

29

The divide-and-conquer algorithm2/3
 Divide:

 Find a vertical line l that bisects the point set P into two sets PL and
PR such that |PL| = ⌈|P|/2⌉, |PR| = ⌊|P|/2⌋.

 Divide X into arrays XL and XR.
 Divide Y into arrays YL and YR.

 Conquer:
 Let the closest-pair distances returned for PL and PR be δL and δR,

respectively, and let δ = min(δL, δR).

 Combine:
 The closest pair is either the pair with distance δ, or one point in PL

and the other in PR whose distance is less than δ.
 If the latter happens, both points of the pair must be within δ units

of line l .
 To find such a pair, if one exists, the algorithm does the following:

30

The divide-and-conquer algorithm3/3

1. It creates an array Y′, which is the array Y with all points not in the
2δ-wide vertical strip removed.

2. For each point p in the array Y′, try to find points in Y′ that are within δ
units of p. (Only the 7 points in Y′ that follow p need to be considered.)

3. Suppose δ′ is closest-pair distance found over all pairs of points in Y′.
If δ′ < δ, then return δ′. Otherwise, return δ.

31

Implementation1/2
 Main difficulty:
 Ensure that arrays XL, XR, YL, and YR, which are passed to recursive

calls, are sorted by the proper coordinate.
 Ensure that array Y′ is sorted by y-coordinate.

32

Implementation2/2
 Method:
 Presort the pints in Q by the proper coordinate to get X and Y before

the first recursive call.
 In each recursive call:

 Divide P into PL and PR  O(n) time.
 The following pseudocode gives the idea to get YL, and YR from Y.

 Similar pseudocode works for forming arrays XL, XR, and Y′.

33

1. length[YL] ← length[YR] ← 0
2. for i ← 1 to length[Y]
3. if Y[i] ∈ PL
4. then length[YL] ← length[YL] + 1
5. YL [length[YL]] ← Y[i]
6. else length[YR] ← length[YR] + 1
7. YR [length[YR]] ← Y[i]

Running time
 We get T’(n) = T(n) + O(n lgn).
 T(n): the running time of each recursive step.
 T ’(n): the running time of the entire algorithm.

 We can rewrite the recurrence as

 Thus, T(n) = O(n lgn) and T’(n) = O(n lgn).

34





≤
>+

=
.1 if)1(
,3 if)()2/(2

)(
nO
nnOnT

nT

