
AlgorithmsChapter 24Single-Source Shortest Paths
Associate Professor: Ching-Chi Lin

林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 The Bellman-Ford algorithm
 Single-source shortest paths in directed acyclic graphs
 Dijkstra's algorithm

2

Single-source shortest paths problem
 Input: A weighted graph G = (V, E) and a source vertex s.

 Output: Find a shortest path from s to every vertex v∈V.

 The weight w(p) of path p =〈v0, v1,..., vk〉is the sum of the
weights of its constituent edges:

 The shortest path weight δ(u,v) from u to v is

 A shortest path from vertex u to vertex v is then defined as any
path p with weight w(p) = δ(u,v).

3

.),()(
1

1
=

−=
k

i
ii vvwpw

∞
=

.otherwise
, to from patha is thereif }:)(min{

),(
vuvupw

vuδ
p

An example

 The shortest path might not be unique.

 When we look at shortest paths from one vertex to all other
vertices, the shortest paths are organized as a tree.

 The weights can represent
 time, cost, penalties, loss.

4

Variants
 Single-destination shortest-paths problem: Find shortest

paths to a given destination vertex.
 By reversing the direction of each edge in the graph, we can
reduce this problem to a single-source problem.

 Single-pair shortest-paths problem: Find shortest path from u
to v for given vertices u and v.
 All know algorithms have the same running time as the single-
source algorithms.

 All-pairs shortest-paths problem: Find shortest path from u to
v for all u,v∈V. We’ll see algorithms for all-pairs in the next
chapter.

5

Negative-weight edges

 If G contains no negative-weight cycles reachable from s, then
δ(s,v) is well-defined for all v∈V.

 If there is a negative-weight cycle on some path from s to v,
we define δ(s,v) = −∞.

6

Output of single-source shortest-path algorithm
 For each vertex v∈V :
 d[v] = δ(s, v).
 Initially, d[v] = ∞.
 Reduces as algorithms progress.
 But always maintain d[v] ≥ δ(s, v).

 π[v] : the predecessor of v on a shortest path from s.
 If no predecessor, π[v] = NIL.
 π induces a tree shortest-path tree.

 Predecessor subgraph: Gπ = (Vπ, Eπ)
 Vπ = {v ∈ V: π[v] ≠ NIL}∪{s}
 Eπ = {(π[v], v) : v ∈ Vπ− {s}}

7

Initialization & Relaxation
 All algorithm start with INITIALIZE-SINGLE-SOURCE and then

repeatedly decrease d[v] until d[v] ≥ δ(s, v).

8

INITIALIZE-SINGLE-SOURCE(G, s)
1. for each vertex u∈V[G]
2. d[u] ← ∞
3. π[u] ← NIL
4. d[s] ← 0

RELAX(u, v, w)
1. if d[v] > d[u] + w(u, v)
2. d[v] ← d[u] + w(u, v)
3. π[v] ← u

The Bellman-Ford algorithm
 Allows negative-weight edges.
 Computes d[v] and π[v] for all u∈V.
 Returns TRUE if no negative-weight cycles reachable from s,

FALSE otherwise.

9

BELLMAN-FORD(G, w, s)
1. INITIALIZE-SINGLE-SOURCE(G, s)
2. for i = 1 to n − 1
3. for each edge (u, v)∈E
4. RELAX(u, v, w)
5. for each edge (u, v)∈E
6. if d[v] > d[u] + w(u, v)
7. return FALSE
8. return TRUE

 The first for loop relaxes all
edges n − 1 Ɵmes.

 Time: Θ(nm).

Outline
 The Bellman-Ford algorithm
 Single-source shortest paths in directed acyclic graphs
 Dijkstra's algorithm

11

Single-source shortest paths in directed acyclic graphs
 Since G is a dag, no negative-weight cycles can exist.

 By relaxing the edges of G according to a topological sort of its
vertices, we can compute shortest paths from a single source
in Θ(n+m) time.

 Time: Θ(n+m).

12

DAG-SHORTEST-PATHS (G, w, s)
1. topologically sort the vertices of G
2. INITIALIZE-SINGLE-SOURCE(G, s)
3. for each vertex u, taken in topologically sorted order
4. for each vertex v ∈ Adj[u]
5. RELAX(u, v, w)

Outline
 The Bellman-Ford algorithm
 Single-source shortest paths in directed acyclic graphs
 Dijkstra's algorithm

14

Dijkstra’s algorithm
 No negative-weight edges.
 Essentially a weighted version of breadth-first search.
 Instead of a FIFO queue, uses a priority queue.
 Keys are shortest-path weights (d[v]).

 Have two sets of vertices:
 S = vertices whose final shortest-path weights are determined.
 Q = priority queue = V − S.

15

INITIALIZE-SINGLE-SOURCE(G, s)
1. for each vertex u∈V[G]
2. d[u] ← ∞
3. π[u] ← NIL
4. d[s] ← 0

RELAX(u, v, w)
1. if d[v] > d[u] + w(u, v)
2. d[v] ← d[u] + w(u, v)
3. π[v] ← u

Dijkstra’s algorithm

 Looks a lot like Prim’s algorithm, but computing d[v], and
using shortest-path weights as keys.

 Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V − S to add to S.

17

DIJKSTRA (G, w, s)
1. INITIALIZE-SINGLE-SOURCE(G, s)
2. S ← ∅
3. Q ← V
4. while Q ≠ ∅
5. u ← EXTRACT-MIN(Q)
6. S ← S∪{u}
7. for each v ∈ Adj[u]
8. RELAX(u, v, w)

O(nlgn)

O(n)

O(m lgn) O(m)

O(n)

Binary heap Fibonacci heap

O(m lgn) O(m + nlgn)Total:

