Algorithms

Chapter 24
Single-Source Shortest Paths

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» The Bellman-Ford algorithm
» Single-source shortest paths in directed acyclic graphs
» Dijkstra's algorithm

Single-source shortest paths problem

» Input: A weighted graph G = (V, E) and a source vertex s.
» Output: Find a shortest path from s to every vertex ve V.

» The weight w(p) of path p = (v, v,,..., v,) is the sum of the
weights of its constituent edges:

k
W(P) =) W(V,_,V,).
i=l1
» The shortest path weight §(u,v) from uto vis

min{ W(p) : u/gzv} if there 1sa path from uto v,

oo otherwise.

o(u,V) :{

» A shortest path from vertex u to vertex v is then defined as any
path p with weight w(p) = 6(u,v).

An example

» The shortest path might not be unique.

» When we look at shortest paths from one vertex to all other
vertices, the shortest paths are organized as a tree.

» The weights can represent
» time, cost, penalties, loss.

Variants

» Single-destination shortest-paths problem: Find shortest
paths to a given destination vertex.

» By reversing the direction of each edge in the graph, we can
reduce this problem to a single-source problem.

» Single-pair shortest-paths problem: Find shortest path from u
to v for given vertices u and v.

» All know algorithms have the same running time as the single-
source algorithms.

» All-pairs shortest-paths problem: Find shortest path from u to
v for all u,ve V. We’'ll see algorithms for all-pairs in the next
chapter.

Negative-weight edges

» If G contains no negative-weight cycles reachable from s, then
&(s,v) is well-defined for all ve V.

» If there is a negative-weight cycle on some path from s to v,
we define 6(s,v) = —co.

Output of single-source shortest-path algorithm

» For each vertexve V:
dlv] = é(s, v).

v

» Initially, d[v] = .
» Reduces as algorithms progress.
» But always maintain d[v] = (s, v).

» Tr[v]: the predecessor of v on a shortest path from s.
» If no predecessor, TT[v] = NIL.
» TTinduces a tree =2 shortest-path tree.

» Predecessor subgraph: G_=(V_, E)
» V.= {ve V:1r[v] # NIL} U{s}
» E_= {(mr[v],v):ve V_—{s}}

Initialization & Relaxation

u ¥ U v
O——=O G)—2—>(5)
. RELAX(2,v,w) _ RELAX(u,v,w)
u ? 14 u s v
O——=@
(a) (b)

» All algorithm start with INITIALIZE-SINGLE-SOURCE and then
repeatedly decrease d[v] until d[v] 2 (s, v).

INITIALIZE-SINGLE-SOURCE(G, S) ReLax(u, v, w)

1. for each vertex ue V[G] 1. ifd[v] > d[u] + w(u, v)

2 dlu] < o 2. d[v] < d[u] + w(u, v)
3. TT[u] < NIL 3. TT[v] <« u

4 d[s] <0

The Bellman-Ford algorithm

» Allows negative-weight edges.
» Computes d[v] and 1T[v] for all ue V.

» Returns TRUE if no negative-weight cycles reachable from s,
FALSE otherwise.

BELLMAN-FORD(G, w, S)
INITIALIZE-SINGLE-SOURCE(G, S)
fori=1ton-1 » The first for loop relaxes all

for each edge (u, v)E E edges n - 1 times.
ReLax(u, v, w)

1

2

3

: » Time: ©(nm)
5. foreach edge (v, v)E E ime: ©Otnm).
6

7

8

if d[v] > d[u] + w(u, v)
return FALSE
return TRUE

(e)

(d)

Outline

» The Bellman-Ford algorithm
» Single-source shortest paths in directed acyclic graphs
» Dijkstra's algorithm

Single-source shortest paths in directed acyclic graphs

» Since G is a dag, no negative-weight cycles can exist.

» By relaxing the edges of G according to a topological sort of its
vertices, we can compute shortest paths from a single source
in O(n+m) time.

DAG-SHORTEST-PATHS (G, w, s)

1. topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE(G, S)

3 for each vertex u, taken in topologically sorted order
4. for each vertex v e Adj[u]

5 ReLax(u, v, w)

» Time: ®(n+m).

Outline

» The Bellman-Ford algorithm
» Single-source shortest paths in directed acyclic graphs
» Dijkstra's algorithm

Dijkstra’s algorithm

» No negative-weight edges.
» Essentially a weighted version of breadth-first search.
» Instead of a FIFO queue, uses a priority queue.
» Keys are shortest-path weights (d[v]).
» Have two sets of vertices:
» S =vertices whose final shortest-path weights are determined.

» Q = priority queue =V -S.

INITIALIZE-SINGLE-SOURCE(G, S) ReLax(u, v, w)

1. for each vertex ue V[G] 1. ifd[v] > d[u] + w(u, v)

2. dlu] < oo 2. dlv] < d[u] + w(u, v)
3. TT[u] < NIL 3. TT[v] < u

4. d[s] <0

Dijkstra’s algorithm
DuksTrRA (G, w, S) Binary heap Fibonacci heap
INITIALIZE-SINGLE-SOURCE(G, S)
S« } O(n)
Q«V
whileQ # 0

1
2

3

4

5. U < ExTRACT-MIN(Q) + Of(nlgn)
6 S « Suiu} + 0O(n)

7

8

for each v € Adj[u]
ReLax(u, v, w) } Olmlgn) Ofm)

Total: O(mlgn) O(m + nlgn)

» Looks a lot like Prim’s algorithm, but computing d[v], and
using shortest-path weights as keys.

» Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V- S to add to S.

