Algorithms

Chapter 23
Minimum Spanning Trees

Associate Professor: Ching-Chi Lin

ot w3

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Growing a minimum spanning tree
» The algorithms of Kruskal and Prim

» Problem:
» A town has a set of houses and a set of roads.
» Aroad connects 2 and only 2 houses.
» A road connecting houses u and v has a repair cost w(u, v).

» Goal: Repair enough roads such that
everyone stays connected, and
total repair cost is minimum.

» Model as a graph:
» Undirected graph G = (V, E). Weight w(u, v) on each edge (u, v) EE.
» Find T € E such that
T connects all vertices (T is a spanning tree), and

W(T)= > w(u,v) is minimized.
(uV)ET

» A spanning tree whose weight is minimum over all spanning
trees is called a minimum-spanning-tree, or MST.

» Example of such a graph:

» In this example, there is more than one MST.
» Replace edge (e, f) by (c, e).
» Get a different spanning tree with the same weight.

Growing a minimum spanning tree

» Some properties of an MST:
» It has |V| - 1 edges.
» It has no cycles.

» It might not be unique.

» Building up the solution
» We will build a set A of edges.
» Initially, A has no edges.
» As we add edges to A, maintain a loop invariant:
Loop invariant: A is a subset of some MST.
» Add only edges that maintain the invariant.

» If Ais a subset of some MST, an edge (u, v) is safe for A if and only if
AU{(u, v)}is also a subset of some MST.

Generic MST algorithm

GENERIC-MST(G, w)
1. A—Q

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A
4. A — AUu{(u, v)}

5 return A

» Use the loop invariant to show that this generic algorithm
works.

» Initialization: The empty set trivially satisfies the loop invariant.

» Maintenance: Since we add only safe edges, A remains a subset
of some MST.

» Termination: All edges added to A are in an MST, so when we
stop, A is a spanning tree that is also an MST.

» Edge (c, f) has the lowest weight of any edge in the graph.
» IsitsafeforA=07

» Intuitively:
» LetSCV.
» In any MST, there has to be one edge that connects S with V - S.
» Why not choose the edge with minimum weight?

» Acut (S, V-S)is a partition of vertices into disjoint sets
Sand V-S.

» Edge (u, v) EE crosses cut (S, V-S5) if one endpoint isin S and
the otherisin V- S.

» A cutrespects A if and only if no edge in A crosses the cut.

» An edge is a light edge crossing a cut if and only if its weight is
minimum over all edges crossing the cut.

» For a given cut, there can be more than 1 light edge crossing it.

» An example:

» The edge (d, c) is the unique light edge crossing the cut.

» A subset A of the edges is shaded; note that the cut (S, V-5)
respects A, since no edge of A crosses the cut.

» Theorem 23.1
Let A be a subset of some MST, (S, V-S) be a cut that respects
A, and (u,v) be a light edge crossing (S, V-S5).
Then (u,v) is safe for A.

» Proof:

Let T be an MST that includes A.

If T contains (u, v), done.

Otherwise, suppose that T does not contain (u, v).

We’ll construct a different MST T’ that includes Au{(u,v)}.
Since T is an MST, it contains a unique path p between u and v.

vV Vv Vv Vv Vv V9

Path p must cross the cut (S, V-S) at least once.

Let (x, y) be an edge of p that crosses the cut.
Clearly, we have w(u,v) £ w(x, y).

Let T"=T-{(x, y)}U{(u,v)}.

Clearly, T’ is also a spanning tree.

w(T’) = w(T) - w(x,y) + w(u,v) < w(T).

T’ is also an MST.

It remains to show that (u, v) is safe for A.

vV Vv VvV VvV VvV VvV Vv ©Y

Since the cut respects A,
edge (x, y) is not in A.

» ACTand(x, Y)EA>ACT-{(x, y)}ET.
» AU{(u, v)}ET.
» Since T’ is an MST, (u, v) is safe for A.

Properties of GENERIC-MST

» So, in GENERIC-MST, we have:
» Ais a forest containing connected components.
Initially, each component is a single vertex.
Any safe edge merges two of these components into one.
Each component is a tree.

vV v VvV v

Since an MST has exactly | V| -1 edges, the for loop
iterates | V| -1 times.

» Equivalently, after adding | V| -1 safe edges, we’re down to just
one component.

Corollary 23.2

» Corollary 23.2
If C=(V,, E;) is a connected component in the forest
G, =(V,A)and (u, v) is a light edge connecting C to some
other component in G,, then (u,v) is safe for A.

» Proof:

» The cut (V,, V- V,) respects A, and (u, v) is a light edge for this
cut.

» Therefore, (u,v) is safe for A.

Outline

» Growing a minimum spanning tree

» The algorithms of Kruskal and Prim

» G=(V, E)is aconnected, undirected, weighted graph.
w:E—R.

» Starts with each vertex being its own component.

» Repeatedly merges two components into one by choosing the
light edge that connects them.

» Scans the set of edges in monotonically increasing order by
weight.

» Uses a disjoint-set data structure to determine whether an
edge connects vertices in different components.

MST-KRUSKAL(G, w)

1 A—Q@

2 for each vertex ve V[G]

3 MAKE-SET(v)

4. sort the edges of E into nondecreasing order by weight w

5. for each edge (u, v) EE, taken in nondecreasing order by weight
6 if FIND-SET(u) # FIND-SET(v)

7 A— AU{(u, v)}

8 UNION(u, v)

9 return A

» In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph.

» The safe edge added to A is always a least-weight edge in the
graph that connects two distinct components.

Analysis

» Time complexity
» Initialize A: O(1)
» First for loop: n MAKE-SETs
» Sort E: O(mlgm)
» Second for loop: O(m) FIND-SETs and UNIONS

» Using the disjoint-set data structure in Chapter 21.
» Time complexity: O((n+m) a(n)) + O(mlgm)
» Since G is connected, m>n-1= O(ma(n)) + O(mlgm)
» a(n) =0(lgn) = O(lgm).
» Therefore, total time is O(mlgm).
» m<n?=lgm=0(2lgn)=0(lgn).
» Therefore, O(mlgn) time.

light edge
» G=(V, E)is aconnected, undirected, weighted graph.
» Builds one tree, so A is always a tree.
» Starts from an arbitrary “root”.

» At each step, find a light edge crossing cut (V,, V- V,),
where V, = vertices that A is incident on.

» Add this edge to A.

MST-PRIM(G, w, r)
1 for each u€ VI[G]

2 key[u] ¢ oo

3 nfu] < NIL

4. key[r] < O

5. Q< V[G]

6 whileQ# @

7 U < EXTRACT-MIN(Q)

8 for each v €Adj[u]

9 if vEQ and w(u, v) < key|v]
10. nfv] <« u

11. key[v] < w(u, v)

» In Prim's algorithm, the set A forms a single tree.

» The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

(a) (b)

(c) (d)

()

Analysis

» Time complexity depends on how the priority queue is
implemented.
» Suppose Q is a binary heap. (worst case)
» Initialize Q and first for loop: O(n)
» while loop: n EXTRACT-MIN calls = O(nlgn)
> < mDECREASE-KEY calls = O(mlgn)
» Total: O(mlgn)

» Suppose Q is a Fibonacci heap. (amortized)
» Initialize Q and first for loop: O(n)
» while loop: n EXTRACT-MIN calls = O(nlgn)
p < mDECREASE-KEY calls = O(m)
» Total: O(m+nlgn)

