Algorithms Chapter 23 Minimum Spanning Trees

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Growing a minimum spanning tree
- ▶ The algorithms of Kruskal and Prim

Overview_{1/2}

Problem:

- A town has a set of houses and a set of roads.
- A road connects 2 and only 2 houses.
- \blacktriangleright A road connecting houses u and v has a repair cost w(u, v).
- ▶ Goal: Repair enough roads such that
 - everyone stays connected, and
 - total repair cost is minimum.

Model as a graph:

- ▶ Undirected graph G = (V, E). Weight w(u, v) on each edge $(u, v) \in E$.
- Find $T \subseteq E$ such that
 - ▶ T connects all vertices (T is a spanning tree), and
 - $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

Overview_{2/2}

- ▶ A spanning tree whose weight is minimum over all spanning trees is called a **minimum-spanning-tree**, or **MST**.
- Example of such a graph:

- In this example, there is more than one MST.
- Replace edge (e, f) by (c, e).
- ▶ Get a different spanning tree with the same weight.

Growing a minimum spanning tree

Some properties of an MST:

- It has |V| − 1 edges.
- It has no cycles.
- It might not be unique.

Building up the solution

- We will build a set A of edges.
- Initially, A has no edges.
- ▶ As we add edges to *A*, maintain a loop invariant:

Loop invariant: A is a subset of some MST.

- ▶ Add only edges that maintain the invariant.
- If A is a subset of some MST, an edge (u, v) is **safe** for A if and only if $A \cup \{(u, v)\}$ is also a subset of some MST.

Generic MST algorithm

```
GENERIC-MST(G, w)

1. A \leftarrow \emptyset

2. while A does not form a spanning tree

3. find an edge (u, v) that is safe for A

4. A \leftarrow A \cup \{(u, v)\}

5. return A
```

- Use the loop invariant to show that this generic algorithm works.
 - ▶ Initialization: The empty set trivially satisfies the loop invariant.
 - Maintenance: Since we add only safe edges, A remains a subset of some MST.
 - ▶ **Termination:** All edges added to *A* are in an MST, so when we stop, *A* is a spanning tree that is also an MST.

Finding a safe edge_{1/2}

- ▶ Edge (c, f) has the lowest weight of any edge in the graph.
 - ▶ Is it safe for $A = \emptyset$?
- Intuitively:
 - \blacktriangleright Let $S \subset V$.
 - ▶ In any MST, there has to be one edge that connects S with V S.
 - Why not choose the edge with minimum weight?
- A cut (S, V-S) is a partition of vertices into disjoint sets S and V-S.
- ▶ Edge $(u, v) \in E$ crosses cut (S, V S) if one endpoint is in S and the other is in V S.
- A cut respects A if and only if no edge in A crosses the cut.

Finding a safe edge_{2/2}

- An edge is a **light edge** crossing a cut if and only if its weight is minimum over all edges crossing the cut.
 - ▶ For a given cut, there can be more than 1 light edge crossing it.

- An example:
 - \blacktriangleright The edge (d,c) is the unique light edge crossing the cut.
 - A subset A of the edges is shaded; note that the cut (S, V-S) respects A, since no edge of A crosses the cut.

Theorem $23.1_{1/2}$

Theorem 23.1

Let A be a subset of some MST, (S, V-S) be a cut that respects A, and (u,v) be a light edge crossing (S,V-S). Then (u,v) is safe for A.

Proof:

- ▶ Let T be an MST that includes A.
- If T contains (u, v), done.
- \blacktriangleright Otherwise, suppose that T does not contain (u, v).
- ▶ We'll construct a different MST T' that includes $A \cup \{(u,v)\}$.
- ▶ Since *T* is an MST, it contains a **unique path** *p* between *u* and *v*.
- ▶ Path p must cross the cut (S, V-S) at least once.

Theorem $23.1_{2/2}$

- \blacktriangleright Let (x, y) be an edge of p that crosses the cut.
- ▶ Clearly, we have $w(u, v) \le w(x, y)$.
- ▶ Let $T' = T \{(x, y)\} \cup \{(u, v)\}.$
- ▶ Clearly, *T'* is also a spanning tree.
- $\qquad \qquad \mathbf{w}(T') = \mathbf{w}(T) \mathbf{w}(x, y) + \mathbf{w}(u, v) \leq \mathbf{w}(T).$
- ▶ T' is also an MST.
- \blacktriangleright It remains to show that (u, v) is safe for A.
- Since the cut respects A, edge (x, y) is not in A.
- ▶ $A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T \{(x, y)\} \subseteq T'$.
- $A \cup \{(u, v)\} \subseteq T'.$
- \blacktriangleright Since T' is an MST, (u, v) is safe for A.

Properties of GENERIC-MST

So, in GENERIC-MST, we have:

- ▶ *A* is a forest containing connected components.
- Initially, each component is a single vertex.
- Any safe edge merges two of these components into one.
- ▶ Each component is a tree.
- ▶ Since an MST has exactly |V|-1 edges, the **for** loop iterates |V|-1 times.
- ▶ Equivalently, after adding |V|-1 safe edges, we're down to just one component.

Corollary 23.2

Corollary 23.2

If $C = (V_C, E_C)$ is a connected component in the forest $G_A = (V, A)$ and (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

Proof:

- The cut $(V_C, V V_C)$ respects A, and (u, v) is a light edge for this cut.
- ▶ Therefore, (u,v) is safe for A.

Outline

- Growing a minimum spanning tree
- **▶** The algorithms of Kruskal and Prim

Kruskal's algorithm_{1/2}

- ▶ G = (V, E) is a connected, undirected, weighted graph. $w : E \rightarrow \mathbf{R}$.
 - Starts with each vertex being its own component.
 - ▶ Repeatedly merges two components into one by choosing the light edge that connects them.
 - Scans the set of edges in monotonically increasing order by weight.
 - Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

Kruskal's algorithm_{2/2}

```
MST-KRUSKAL(G, w)

1. A \leftarrow \emptyset

2. for each vertex v \in V[G]

3. MAKE-SET(v)

4. sort the edges of E into nondecreasing order by weight w

5. for each edge (u, v) \in E, taken in nondecreasing order by weight

6. if FIND-SET(u) \neq FIND-SET(v)

7. A \leftarrow A \cup \{(u, v)\}

8. UNION(u, v)

9. return A
```

- In Kruskal's algorithm, the set A is a forest whose vertices are all those of the given graph.
- ▶ The safe edge added to A is always a least-weight edge in the graph that connects two distinct components.

Analysis

Time complexity

- ▶ Initialize *A*: *O*(1)
- ▶ First for loop: *n* Make-Sets
- \blacktriangleright Sort *E*: $O(m \lg m)$
- \blacktriangleright Second for loop: O(m) FIND-SETS and UNIONS

Using the disjoint-set data structure in Chapter 21.

- ▶ Time complexity: $O((n+m) \alpha(n)) + O(m \lg m)$
- ▶ Since G is connected, $m \ge n 1 \Rightarrow O(m\alpha(n)) + O(m \lg m)$
- $\qquad \qquad \alpha(n) = O(\lg n) = O(\lg m).$
- \blacktriangleright Therefore, total time is $O(m \lg m)$.
- ▶ Therefore, $O(m \lg n)$ time.

Prim's algorithm_{1/2}

- G = (V, E) is a connected, undirected, weighted graph.
 - ▶ Builds one tree, so *A* is always a tree.
 - Starts from an arbitrary "root".
 - At each step, find a light edge crossing cut $(V_A, V V_A)$, where V_A = vertices that A is incident on.
 - Add this edge to A.

Prim's algorithm_{2/2}

```
MST-PRIM(G, w, r)

1. for each u \in V[G]

2. key[u] \leftarrow \infty

3. \pi[u] \leftarrow \text{NIL}

4. key[r] \leftarrow 0

5. Q \leftarrow V[G]

6. while Q \neq \emptyset

7. u \leftarrow \text{EXTRACT-MIN}(Q)

8. for each v \in Adj[u]

9. if v \in Q and w(u, v) < key[v]

10. \pi[v] \leftarrow u

11. key[v] \leftarrow w(u, v)
```

- ▶ In Prim's algorithm, the set A forms a single tree.
- ▶ The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree.

Analysis

- ▶ Time complexity depends on how the priority queue is implemented.
- ▶ Suppose *Q* is a **binary heap**. (worst case)
 - Initialize Q and first **for** loop: O(n)
 - ▶ while loop: n EXTRACT-MIN calls $\Rightarrow O(n \lg n)$
 - $\leq m$ Decrease-Key calls $\Rightarrow O(m \lg n)$
 - ightharpoonup Total: $O(m \lg n)$
- ▶ Suppose *Q* is a **Fibonacci heap**. (amortized)
 - Initialize Q and first **for** loop: O(n)
 - ▶ while loop: n EXTRACT-MIN calls $\Rightarrow O(n \lg n)$
 - $\leq m$ Decrease-Key calls $\Rightarrow O(m)$
 - ightharpoonup Total: $O(m + n \lg n)$