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Overview

» Disjoint-set data structures
» Also known as “union find.”
» Maintain a collection S ={S,, S,,..., S} of disjoint dynamic sets.

» Each set is identified by a representative, which is some member of
the set.

» Doesn’t matter which member is the representative, as long as if
we ask for the representative twice without modifying the set, we
get the same answer both times.



Operations

» Disjoint-set data structures support the following three
operations.

» MAKE-SET(x): create a new set S, = {x}, and add S; to S.

» UNION(x, y): unite the dynamic sets that contain x and y, say S, and
Sy, into a new set.

if x€S,, y€S,, then S<-5-5,-5 U{S,US }.
The representative of the resulting set is any member of S,US, .

Since we require the sets in the collection to be disjoint, we "destroy"
sets S,and S, .

» FIND-SET(x): return the representative of the set containing x.



Analyzing the running times

» Two parameters:

» n=number of elements = number of MAKE-SET operations.

» m = total number of MAKE-SET, UNION, and FIND-SET operations.
» Analysis:

» m2=n.

» Have at most n — 1 UNION operations.

» Assume that the first n operations are MAKE-SET.



An application

» Determining the connected components

» Foragraph G =(V, E), vertices u, v are in same connected
component if and only if there's a path between them.

» Connected components partition vertices into equivalence classes.

CONNECTED-COMPONENTS(G)
1. for each vertex ve V[G]
MAKE-SET(v)
for each edge (u, v) EE[G]
if FIND-SET(u) # FIND-SET(V)
UNION(u, v)

SAME-COMPONENT(u, V)

1. if FIND-SET(u) = FIND-SET(V)
2. return TRUE

3. else return FALSE
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Linked list representation

» The first object in each linked list serves as its set's
representative.
» Each object in the linked list contains
» aset member,
» a pointer to the next set member, and
» a pointer back to the representative.

» Each list maintains pointers head, to the representative, and tail,
to the last object in the list.
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Figure 21.2 (a) Linked-list representations of two
sets. (b) The result of UNION(g, e).



Operations

» MAKE-SET(x): create a new linked list whose only object is x.
» O(1) time.

» FIND-SET(x):return the pointer from x back to the representative.
» O(1) time.

» UNION(x, y): append y's list onto the end of x's list.
» Use x’s tail pointer to find the end.
» Need to update the representative for each object on y's list.
» Take time linear in the length of y's list.



Worst case for implementation of the union

» Suppose that we have objects x,, x,,..., x, and execute the
following sequence of operations.

Operation Number of objects updated
MAKE-SET(x1) 1
MAKE-SET(x») |
MAKE-SET(x5) 1

UNION(x2, x1) 1

UNION(x3, x2) 2

UNION(x4, X3) 3

UNION (x5, Xn—1) n—1

» The running time for the 2n - 1 operations is ©(n?).
» The amortized time of an operation is ®(n).



» Append the smaller list onto the longer.

» With this simple weighted-union heuristic, a single union can
still take €2(n) time, e.g., if both sets have n/2 members.

» Theorem 21.1 Using the weighted-union heuristic, a sequence
of m MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, takes
O(m+nlgn) time.

Proof:

» Each MAKE-SET and FIND-SET still takes O(1), and there are O(m) of
them.

» How many times can each object’s representative pointer be
updated?

It must be in the smaller set each time.



times updated size of resulting set

] > 2
2 > 4
3 > 8
k > 2k
lgn >n

» The first time x's representative pointer was updated, the
resulting set must have had at least 2 members.

» Therefore, each representative is updated <lgn times.

» The total time used in updating pointers over all UNION
operations is thus O(nlgn).

» The total time for the entire sequence is thus O(m+nlgn).
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Disjoint-set forest

» In a disjoint-set forest:
» Each tree represents one set;
» Each member points only to its parent;
» The root contains the representative; and
» The root s its own parent.
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Operations

» MAKE-SET(x): creates a tree with just one node.
» O(1) time.

» FIND-SET(x): follow parent pointers until we find the root.
» O(h) time.
» The nodes visited on this path toward the root constitute the find
path.

» UNION(x, y): causes the root of one tree to point to the root of
the other.
» O(h) time.

» Problem: A sequence of n — 1 UNION operations may create a
tree that is just a linear chain of n nodes.
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Heuristics to improve the running time

» By using two heuristics, however, we can achieve a running time
that is almost linear in the total number of operations m.

» Union by rank: make the root of the tree with fewer nodes a
child of the root of tree with more nodes.

» Don’t actually use size.
» Use rank, which is an upper bound on height of node.

» Make the root with the smaller rank into a child of the root with the
larger rank.

» Path compression: make all nodes on the find path direct
children of root.



Path compression
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» Triangles represent subtrees whose roots are the nodes shown.

» In Figure b, each node on the find path now points directly to
the root after executing FIND-SET(a).



Pseudocode for disjoint-set forest

MAKE-SET(x)
1. px] < x
2. rank[x] < 0 LINK(x, y)
1. if rank[x] > rank]y]

UNION(x, y) 2. plyl < x
1. LINK(FIND-SET(x), FIND-SET(y)) 3. elseplx] <y
4. if rank[x] = rank[y]
5. rankly] < rank[y] + 1
FIND-SET(x)
1. if x # p[x]
2. p[x] < FIND-SET(p[x])
3. return p[x]

» The FIND-SET procedure is a two-pass method:
» it makes one pass up the find path to find the root; and

» a second pass back down the find path to update each node to
point directly to root.



» Union by rank yields a running time of O(mlgn).

» Path-compression gives a worst-case running time
O(n+f-(1+log,, ¢,n)).

» n=number of MAKE-SET operations.
» f = number of FIND-SET operations.



» When we use both union by rank and path compression, the
worst-case running time is O(ma/(n)), where a(n) is a very slowly
growing function.

» In any conceivable application, a(n) < 4.
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