Algorithms Chapter 21 DS for Disjoint Sets

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Disjoint-set operations
- Linked list representation of disjoint sets
- Disjoint-set forests
- Analysis of union by rank with path compression

Overview

Disjoint-set data structures

- Also known as "union find."
- ▶ Maintain a collection $S = \{S_1, S_2, ..., S_k\}$ of **disjoint dynamic** sets.
- ▶ Each set is identified by a **representative**, which is some member of the set.
- Doesn't matter which member is the representative, as long as if we ask for the representative twice without modifying the set, we get the same answer both times.

Operations

- Disjoint-set data structures support the following three operations.
 - MAKE-SET(x): create a new set $S_i = \{x\}$, and add S_i to S.
 - UNION(x, y): unite the dynamic sets that contain x and y, say S_x and S_y , into a new set.
 - ▶ if $x \in S_x$, $y \in S_y$, then $S \leftarrow S S_x S_y \cup \{S_x \cup S_y\}$.
 - ▶ The representative of the resulting set is any member of $S_x \cup S_y$.
 - Since we require the sets in the collection to be disjoint, we "destroy" sets S_x and S_y .
 - FIND-SET(x): return the representative of the set containing x.

Analyzing the running times

▶ Two parameters:

- \triangleright n = number of elements = number of Make-Set operations.
- \rightarrow m = total number of Make-Set, Union, and Find-Set operations.

Analysis:

- $\rightarrow m \geq n$.
- ▶ Have at most n-1 UNION operations.
- ▶ Assume that the first *n* operations are MAKE-SET.

An application

Determining the connected components

- For a graph G = (V, E), vertices u, v are in same connected component if and only if there's a path between them.
- Connected components partition vertices into equivalence classes.

```
CONNECTED-COMPONENTS(G)

1. for each vertex v \in V[G]

2. MAKE-SET(v)

3. for each edge (u, v) \in E[G]

4. if FIND-SET(u) \neq FIND-SET(v)

5. UNION(u, v)

SAME-COMPONENT(u, v)

1. if FIND-SET(u) = FIND-SET(v)

2. return TRUE

3. else return FALSE
```


Edge processed			Coll	lection	of disjoi	int set	S			
initial sets	<i>{a}</i>	<i>{b}</i>	<i>{c}</i>	{ <i>d</i> }	{ <i>e</i> }	{ <i>f</i> }	<i>{g}</i>	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(b,d)	<i>{a}</i>	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	{ <i>g</i> }	<i>{h}</i>	{ <i>i</i> }	$\{j\}$
(e,g)	<i>{a}</i>	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		$\{e,g\}$	{ <i>f</i> }		<i>{h}</i>	<i>{i}</i>	{ <i>j</i> }
(a,c)	<i>{a,c}</i>	{ <i>b</i> , <i>d</i> }			{ <i>e</i> , <i>g</i> }	{ <i>f</i> }		{ <i>h</i> }	{ <i>i</i> }	$\{j\}$
(h,i)	<i>{a,c}</i>	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$
(a,b)	$\{a,b,c,d\}$				$\{e,g\}$	<i>{f}</i>		$\{h,i\}$		$\{j\}$
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$			<i>{h,i}</i>		$\{j\}$
(b,c)	$\{a,b,c,d\}$				$\{e,f,g\}$			<i>{h,i}</i>		$\{j\}$

Outline

- Disjoint-set operations
- **▶** Linked list representation of disjoint sets
- Disjoint-set forests
- Analysis of union by rank with path compression

Linked list representation

- ▶ The first object in each linked list serves as its set's representative.
- Each object in the linked list contains
 - a set member,
 - a pointer to the next set member, and
 - a pointer back to the representative.
- Each list maintains pointers head, to the representative, and tail, to the last object in the list.

Figure 21.2 (a) Linked-list representations of two sets. (b) The result of UNION(g, e).

Operations

- MAKE-SET(x): create a new linked list whose only object is x.
 - ▶ *O*(1) time.
- FIND-SET(x):return the pointer from x back to the representative.
 - ▶ *O*(1) time.
- ▶ UNION(x, y): append y's list onto the end of x's list.
 - Use x's tail pointer to find the end.
 - ▶ Need to update the representative for each object on y's list.
 - ▶ Take time linear in the length of y's list.

Worst case for implementation of the union

Suppose that we have objects $x_1, x_2, ..., x_n$ and execute the following sequence of operations.

Operation	Number of objects updated
$MAKE-SET(x_1)$	1
$MAKE-SET(x_2)$	1
i.	:
$MAKE-SET(x_n)$	1
UNION (x_2, x_1)	1
UNION (x_3, x_2)	2
UNION (x_4, x_3)	3
i i	:
UNION (x_n, x_{n-1})	n-1

- ▶ The running time for the 2n 1 operations is $\Theta(n^2)$.
- ▶ The amortized time of an operation is $\Theta(n)$.

A weighted-union heuristic_{1/2}

- Append the smaller list onto the longer.
- With this simple weighted-union heuristic, a single union can still take $\Omega(n)$ time, e.g., if both sets have n/2 members.
- Theorem 21.1 Using the weighted-union heuristic, a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which are MAKE-SET operations, takes O(m+nlgn) time.

Proof:

- ▶ Each MAKE-SET and FIND-SET still takes O(1), and there are O(m) of them.
- How many times can each object's representative pointer be updated?
 - It must be in the smaller set each time.

A weighted-union heuristic_{2/2}

times updated	size of resulting set
1	<u>≥ 2</u>
2	≥ 4
3	≥ 2 ≥ 4 ≥ 8
:	:
k	$\geq 2^k$
:	:
$\lg n$	$\geq n$

- The first time x's representative pointer was updated, the resulting set must have had at least 2 members.
- ▶ Therefore, each representative is updated $\leq \lg n$ times.
- The total time used in updating pointers over all UNION operations is thus $O(n \lg n)$.
- ▶ The total time for the entire sequence is thus $O(m+n \lg n)$.

Outline

- Disjoint-set operations
- Linked list representation of disjoint sets
- Disjoint-set forests
- Analysis of union by rank with path compression

Disjoint-set forest

▶ In a disjoint-set forest:

- Each tree represents one set;
- Each member points only to its parent;
- ▶ The root contains the representative; and
- ▶ The root is its own parent.

Operations

- \blacktriangleright MAKE-SET(x): creates a tree with just one node.
 - ▶ *O*(1) time.
- \blacktriangleright FIND-SET(x): follow parent pointers until we find the root.
 - ightharpoonup O(h) time.
 - The nodes visited on this path toward the root constitute the find path.
- UNION(x, y): causes the root of one tree to point to the root of the other.
 - ▶ *O*(*h*) time.
- ▶ **Problem**: A sequence of n-1 UNION operations may create a tree that is just a linear chain of n nodes.

Heuristics to improve the running time

- ▶ By using two heuristics, however, we can achieve a running time that is almost linear in the total number of operations *m*.
- Union by rank: make the root of the tree with fewer nodes a child of the root of tree with more nodes.
 - Don't actually use size.
 - Use rank, which is an upper bound on height of node.
 - Make the root with the smaller rank into a child of the root with the larger rank.
- ▶ Path compression: make all nodes on the find path direct children of root.

Path compression

- ▶ Triangles represent subtrees whose roots are the nodes shown.
- In Figure b, each node on the find path now points directly to the root after executing FIND-SET(a).

Pseudocode for disjoint-set forest

```
MAKE-SET(x)
1. p[x] \leftarrow x
                                                   LINK(x, y)
     rank[x] \leftarrow 0
                                                       if rank[x] > rank[y]
                                                           p[y] \leftarrow x
                                                   2.
UNION(x, y)
                                                   3. else p[x] \leftarrow y
       LINK(FIND-SET(x), FIND-SET(y))
                                                              if rank[x] = rank[y]
                                                                   rank[y] \leftarrow rank[y] + 1
FIND-SET(x)
       if x \neq p[x]
           p[x] \leftarrow \text{FIND-SET}(p[x])
       return p[x]
```

▶ The FIND-SET procedure is a two-pass method:

- it makes one pass up the find path to find the root; and
- ▶ a second pass back down the find path to update each node to point directly to root.

Effect of the heuristics on the running time $_{1/2}$

- ▶ Union by rank yields a running time of $O(m \lg n)$.
- ▶ Path-compression gives a worst-case running time $\Theta(n+f\cdot(1+\log_{2+f/n}n))$.
 - \rightarrow *n* = number of MAKE-SET operations.
 - f = number of FIND-SET operations.

Effect of the heuristics on the running time $_{2/2}$

- When we use both union by rank and path compression, the worst-case running time is $O(m\alpha(n))$, where $\alpha(n)$ is a very slowly growing function.
- ▶ In any conceivable application, $\alpha(n) \leq 4$.

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le A_{4(1)}. \end{cases}$$

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ A_{4(1)} >> 10^{80} \\ \text{">>" = "much-greater-than"} \end{cases}$$