
AlgorithmsChapter 18B-TreesAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Definition of B-trees
 Basic operations on B-trees
 Deleting a key from a B-tree

2

Overview1/2
 B-trees are balanced search trees designed to work well on

magnetic disks.
 B-trees are similar to red-black trees, but they are better at

minimizing disk I/O operations.
 Red-black trees
 A variation of binary search trees.
 Balanced: height is O(lgn), where n is the number of nodes.
 Operations will take O(lgn) time in the worst case.

 B-trees
 Generalize binary search trees in a natural manner.
 Balanced: height is O(lgtn), where n is the number of nodes.
 Operations will take O(t lgtn) time in the worst case, where t is the

minimum degree of the B-tree.
3

Overview2/2

 Running time of a B-tree algorithm is determined by the number
of DISK-READ and DISK-WRITE operations.
 Thus, a B-tree node is usually as large as a whole disk page.
 The "branching factors" between 50 and 2000 are often used,

depending on the size of a key relative to the size of a page.

 An internal node x containing n[x] keys has n[x]+1 children.

4

t = 2

𝑟𝑜𝑜𝑡[𝑇]

Properties of B-trees1/2
 A B-tree T is a rooted tree having the following properties:
 Every node x has the following fields:

 n[x], the number of keys in node x,
 key1[x] ≤ key2[x] ≤ ··· ≤ keyn[x][x],
 leaf[x], leaf[x] = TRUE if x is a leaf, leaf[x] = FALSE if x is an internal node.

 Each internal node x also contains n[x]+1 pointers c1[x], c2[x], ...,
cn[x]+1[x] to its children.

 If ki is any key stored in the subtree with root ci[x], then
k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ ··· ≤ keyn[x][x] ≤ kn[x]+1 .

 All leaves have the same depth, which is the tree's height h.
 Every node x other than the root must have t − 1 ≤ n[x] ≤ 2t − 1,

where t ≥ 2 is the minimum degree of the B-tree.
 If the tree is nonempty, the root has 1 ≤ n[root] ≤ 2t − 1.

5

Properties of B-trees2/2
 The simplest B-tree occurs when t = 2.
 Every internal node then has either 2, 3, or 4 children, and we

have a 2-3-4 tree.

6

Height of a B-tree1/2
 Lemma 18.1 If n ≥ 1, then for any n-key B-tree T of height h and

minimum degree t ≥ 2, ℎ ≤ log௧ ାଵଶ .
Proof:
 The root contains at least one key.
 Thus, there are at least 2 nodes at depth 1.
 All other nodes contain at least t − 1 keys.
 So, at least 2t nodes at depth 2, at least 2t2 nodes at depth 3, and so

on.
 Then, we have 𝑛

7

≥ 1 + 𝑡 − 1 2𝑡ିଵ
ୀଵ= 1 + 2 𝑡 − 1 𝑡 − 1𝑡 − 1= 2𝑡 − 1. ℎ ≤ log௧ 𝑛 + 12

0

1

2

3

1

2

2t

2t2

number
of nodesdepth𝑟𝑜𝑜𝑡[𝑇]

Height of a B-tree2/2

8

Outline
 Definition of B-trees
 Basic operations on B-trees
 Deleting a key from a B-tree

9

Searching a B-tree
 B-TREE-SEARCH is a straightforward generalization of the TREE-

SEARCH procedure defined for binary search trees.
 Instead of making a binary, or “two-way” branching decision at

each node, we make an (n[x]+1)-way branching decision.

 Since n[x] < 2t, the running is O(th) = O(t logtn).

10

B-TREE-SEARCH(x, k)
1. i ← 1
2. while i ≤ n[x] and k > keyi[x]
3. i ← i + 1
4. if i ≤ n[x] and k = keyi[x]
5. return (x, i)
6. elseif leaf[x]
7. return NIL
8. else DISK-READ(ci[x])
9. return B-TREE-SEARCH(ci[x], k)

 A fundamental operation used during insertion is the splitting
a full node y (having 2t − 1 keys) around its median key keyt[y]
into two nodes having t − 1 keys each.

Splitting a node in a B-tree1/2

11

Splitting a node with t = 4. Node y is split into
two nodes, y and z, and the median key S of y
is moved up into y's parent.

If y has no parent, then
the tree grows in height
by one.

𝑦 = 𝑐[𝑥] 𝑦 = 𝑐[𝑥] 𝑧 = 𝑐ାଵ[𝑥]
𝑥 𝑥

Splitting a node in a B-tree2/2

12

B-TREE-SPLIT-CHILD(x, i, y)
1. z ← ALLOCATE-NODE()
2. leaf[z] ← leaf[y]
3. n[z] ← t − 1
4. for j ← 1 to t − 1
5. keyj[z] ← keyj+t[y]
6. if not leaf [y]
7. for j ← 1 to t
8. cj[z] ← cj+t[y]
9. n[y] ← t − 1
10. for j ← n[x] + 1 downto i + 1
11. cj+1[x] ← cj[x]
12. ci+1[x] ← z
13. for j ← n[x] downto i
14. keyj+1[x] ← keyj[x]
15. keyi[x] ← keyt[y]
16. n[x] ← n[x] + 1
17. DISK-WRITE(y)
18. DISK-WRITE(z)
19. DISK-WRITE(x)

Θ(1)

Θ(t)

Θ(1)

Time : O(t)

Inserting a key into a B-tree1/3
 B-TREE-INSERT inserts a key k into a B-tree T of height h in a single

pass down the tree. Requiring O(h) disk accesses.
 Use B-TREE-SPLIT-CHILD to guarantee that the recursion never

descends to a full node.

 The CPU time required is O(th) = O(t logtn).
13

B-TREE-INSERT(T, k)
1. r ← root[T]
2. if n[r] = 2t − 1
3. s ← ALLOCATE-NODE()
4. root[T] ← s
5. leaf[s] ← FALSE
6. n[s] ← 0
7. c1[s] ← r
8. B-TREE-SPLIT-CHILD(s, 1, r)
9. B-TREE-INSERT-NONFULL(s, k)
10. else B-TREE-INSERT-NONFULL(r, k)

Handle the case in which the root
node r is full: the root is split and a
new node s becomes the root.

Inserting a key into a B-tree2/3
 Unlike a binary search tree, a B-tree increases in height at the

top instead of at the bottom.

14

Splitting the root with t = 4. Root node r is split
in two, and a new root node s is created.

The B-tree grows in height by
one when the root is split.

𝑟𝑜𝑜𝑡[𝑇]
𝑟𝑜𝑜𝑡[𝑇]

Inserting a key into a B-tree3/3
 B-TREE-INSERT-NONFULL inserts key k into node x, which is

assumed to be nonfull when the procedure is called.

15

B-TREE-INSERT-NONFULL(x, k)
1. i ← n[x]
2. if leaf[x]
3. while i ≥ 1 and k < keyi[x]
4. keyi+1[x] ← keyi[x]
5. i ← i – 1
6. keyi+1[x] ← k
7. n[x] ← n[x] + 1
8. DISK-WRITE(x)
9. else while i ≥ 1 and k < keyi[x]
10. i ← i – 1
11. i ← i + 1
12. DISK-READ(ci[x])
13. if n[ci[x]] = 2t – 1
14. B-TREE-SPLIT-CHILD(x, i, ci[x])
15. if k > keyi[x]
16. i ← i + 1
17. B-TREE-INSERT-NONFULL(ci[x], k)

Time : O(th)
= O(t logtn).

t = 3

(a) Initial tree

(b) B inserted

(c) Q inserted tree

(d) L inserted tree

(e) F inserted tree

Outline
 Definition of B-trees
 Basic operations on B-trees
 Deleting a key from a B-tree

17

Deleting a key into a B-tree1/3
 B-TREE-Delete deletes the key k from the subtree rooted at x.
 Guarantee that whenever B-TREE-DELETE is called recursively on a

node x, the number of keys in x is at least the minimum degree t.
 Allows us to delete a key from the tree in one downward pass

without having to "back up".

 If the root node x becomes an internal node having no keys, then
 x is deleted,
 x's only child c1[x] becomes the new root of the tree,
 decreasing the height of the tree by one, and
 preserving the property that the root of the tree contains at least

one key.

18

(occur in case 3c, below)

 Delete the key k from x.

19

Case 1: k is in node x and x is a leaf

Case 1: F deleted.

t = 3

Case 2: k is in node x and x is an internal node1/3
 Case 2a: the child y that precedes k has at least t keys.
 Find the predecessor k′ of k in the subtree rooted at y.
 Recursively delete k′, and replace k by k′ in x.

20

Case 2a: M deleted.

t = 3

Case 2: k is in node x and x is an internal node2/3
 Case 2b: the child z that follows k has at least t keys.
 Find the successor k′ of k in the subtree rooted at z.
 Recursively delete k′, and replace k by k′ in x.

21

Case 2a: G deleted.

t = 3

 Case 2c: both y and z have only t − 1 keys.
 Merge k and all of z into y.
 Free z and recursively delete k from y.

Case 2: k is in node x and x is an internal node3/3

22

Case 2c: G deleted.

t = 3

 Determine the root ci[x] of the appropriate subtree that must
contain k.

 Case 3a: ci[x] has at least t keys
 Recursively delete k from ci[x].

 Case 3b: ci[x] has only t − 1 keys but has an immediate sibling
with at least t keys.

 Case 3c: ci[x] and both of ci[x]'s immediate siblings have t − 1
keys.

Case 3: k is not present in internal node x1/3

23

 Case 3b: ci[x] has only t − 1 keys but has an immediate sibling
with at least t keys.

 Give ci[x] an extra key by moving a key from x down into ci[x].
 Moving a key from ci[x]'s immediate left or right sibling up into x.
 Moving the appropriate child pointer from the sibling into ci[x].

Case 3: k is not present in internal node x2/3

24

Case 3b：B deleted.

t = 3

 Case 3c: ci[x] and both of ci[x]'s immediate siblings have t − 1 keys.
 Merge ci[x] with one sibling.
 Moving a key from x down into the new merged node to become the

median key for that node.

Case 3: k is not present in internal node x3/3

25

Tree shrinks in height.Case 3c：D deleted.

t = 3

t = 3

t = 3

Time complexity

28

 Only O(h) disk operations for a B-tree of height h.

 Only O(1) calls to DISK-READ and DISK-WRITE are made between
recursive invocations of the procedure.

 The CPU time required is O(th) = O(t logtn).

