Algorithms

Chapter 18
B-Trees

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Definition of B-trees
» Basic operations on B-trees
» Deleting a key from a B-tree

» B-trees are balanced search trees designed to work well on
magnetic disks.

» B-trees are similar to red-black trees, but they are better at
minimizing disk I/O operations.
» Red-black trees
» A variation of binary search trees.
» Balanced: height is O(lgn), where n is the number of nodes.
» Operations will take O(lgn) time in the worst case.

» B-trees
» Generalize binary search trees in a natural manner.
» Balanced: height is O(lg,n), where n is the number of nodes.

» Operations will take O(tlg,n) time in the worst case, where t is the
minimum degree of the B-tree.

root|T]
N\
LM
L T t=2
Lo L O, T X
B C F G J K L N P R S VWI||lY Z

» Running time of a B-tree algorithm is determined by the number
of DISK-READ and DISK-WRITE operations.

» Thus, a B-tree node is usually as large as a whole disk page.

» The "branching factors" between 50 and 2000 are often used,
depending on the size of a key relative to the size of a page.

» An internal node x containing n[x] keys has n[x]+1 children.

» A B-tree T is a rooted tree having the following properties:

» Every node x has the following fields:
n[x], the number of keys in node x,
key,[x] < key,[x] < -+ < key,4[x],
leaf|x], leaf[x] = TRUE if x is a leaf, leaf[x] = FALSE if x is an internal node.

» Each internal node x also contains n[x]+1 pointers c,[x], ¢,[x], ...,
Cnpx+1lX] tO its children.

» If k;is any key stored in the subtree with root ¢,[x], then
ki < key,[x] < k, < key,[x] < -+ < key,q[X] < K,pqs1 -
» All leaves have the same depth, which is the tree's height h.

» Every node x other than the root must have t -1 < n[x] £ 2t -1,
where t 2 2 is the minimum degree of the B-tree.

» If the tree is nonempty, the root has 1 < n[root] £ 2t - 1.

» The simplest B-tree occurs when t = 2.

» Every internal node then has either 2, 3, or 4 children, and we
have a 2-3-4 tree.

» Lemma 18.1 If n > 1, then for any n-key B-tree T of height h and

. 1
minimum degree t>2, h < logt% :

Proof:

» The root contains at least one key.

» Thus, there are at least 2 nodes at depth 1.

» All other nodes contain at least t — 1 keys.

» So, at least 2t nodes at depth 2, at least 2t> nodes at depth 3, and so

on. .
» Then,wehave n>1+ (t —1) z 2¢i-1
i=1
N e
t—1) |
= 2th — 1, e i

number
root|T depth
[{‘ P of nodes
/’1\\ O 1
] | 1 2
J VAN /AN
! t
f—l e e o t_l t_l e o @ t_l 2 2t
L2171 VAN LTV 7o A I W VA LEETANY
t ! ! I’
t—1 |--o| 11 t—1 |--e| 1=1 t—1 |- t—1 t—1 |-+ =1 3 2t2

Outline

» Definition of B-trees
» Basic operations on B-trees
» Deleting a key from a B-tree

Searching a B-tree

» B-TREE-SEARCH is a straightforward generalization of the TREE-
SEARCH procedure defined for binary search trees.

» Instead of making a binary, or “two-way” branching decision at
each node, we make an (n[x]+1)-way branching decision.

B-TREE-SEARCH(X, k)
<1
while i < n[x] and k > key,[x]
j<—i+1
if i < n[x] and k = key,[x]
return (x, i)
elseif leaf[x]
return NIL
else DIsK-READ(c;[x])
return B-TREE-SEARCH(c;[x], k)

O NV AEWDNR

» Since n[x] < 2t, the running is O(th) = O(tlog,n).

» A fundamental operation used during insertion is the splitting
a full node y (having 2t — 1 keys) around its median key key,[y]
into two nodes having t — 1 keys each.

N N N
N NS
X \gzﬁx\,jﬁx X \&Qﬁ” \&Qﬁ\\&qﬁ”

y = ci[x] ' '""""""""""":""'y = ¢[x] / \z = Ciy1[x]
TITTIT] T 11T
L T, s Ty 15 Tg T 13 T, 15 1, I5 Ts T; Ty

Splitting a node with t = 4. Node y is split into If y has no parent, then

two nodes, y and z, and the median key S of y the tree grows in height

is moved up into y's parent. by one.

B-TREE-SPLIT-CHILD(X, i, y)

1. Z <— ALLOCATE-NODE()

2. leaf|z] < leafly] } 0(1)
3. njz] «t-1

4. forj«—1tot-1 \
5. key,[z] < key;,ly]

6. if not leaf [y]

7. forj<—1tot

8. Cj[Z] — Cj+t[y]

o nlyl—t-1 > ot
10. forj< n[x]+1downtoi+1
11. Civy[X] < ¢i[X]

12, CyqlX] 2

13. forj < n[x] downto i

14, keyj+1[x] — keyj[x] J
15. key[x] < key,[y] -
16. n[x] <« n[x]+1

17. DISK-WRITE(y) - o1

18. DISK-WRITE(2) T _ |
19. DISK-WRITE(x) Time : O(t) :

» B-TREE-INSERT inserts a key k into a B-tree T of height h in a single
pass down the tree. Requiring O(h) disk accesses.

» Use B-TREE-SPLIT-CHILD to guarantee that the recursion never

descends to a full node.

B-TREE-INSERT(T, k)
1. r < root[T]

B-TREE-SPLIT-CHILD(s, 1, r)

10. else B-TREE-INSERT-NONFULL(r, k)

2. ifn[r]=2t-1 \
3. s < ALLOCATE-NODE()

4. root[T] < s

5. leaf[s] < FALSE

6. nis] <0

7. cis] < r

8.

9.

B-TREE-INSERT-NONFULL(s, k) /

Handle the case in which the root
node ris full: the root is split and a
new node s becomes the root.

» The CPU time required is O(th) = O(tlog,n).

» Unlike a binary search tree, a B-tree increases in height at the
top instead of at the bottom.

root|[T]

s

H

root[T]
\i" ‘ r

|A|D|F|H|L|N|P| """"""""""" e |A|D|F| |L|N|P|
SRRy NNy
T, T, Ty T, Ts T, T, Ty T, T, Ty T, T, Ts T, Ty

Splitting the root with t = 4. Root node r is split The B-tree grows in height by
in two, and a new root node s is created. one when the root is split.

» B-TREE-INSERT-NONFULL inserts key k into node x, which is

assumed to be nonfull when the procedure is called.

B-TREE-INSERT-NONFULL(x, k)
1. i < n[x]

2 if leaf[x]

3 while i > 1 and k < key,[x]
4. key;,,[x] < key,[x]

5. i—i—1

6 key.,,[x] < k

7 nix] < nix]+1

8

. DISK-WRITE(x)
9. else whilei>1 and k < key,[x]
10. j<—i—-1
11. j<—i+1
12. DIsK-READ(c,[x])
13. if n[¢[x]] =2t -2
14. B-TREE-SPLIT-CHILD(x, i, ¢,[x]) o _ '
15. if k > key.[x] Time : O(th) :
16. i—i+1 | = O(t|ogtn).§
17. B-TREE-INSERT-NONFULL(c;[x], k)

(a) Initial tree

(b) B inserted

A B CDE

(c) Qinserted tree G M P T

(d) L inserted tree

(e) Finserted tree

9!

N
=
o
]
=

Outline

» Definition of B-trees
» Basic operations on B-trees
» Deleting a key from a B-tree

» B-TREE-Delete deletes the key k from the subtree rooted at x.

» Guarantee that whenever B-TREE-DELETE is called recursively on a
node x, the number of keys in x is at least the minimum degree t.

» Allows us to delete a key from the tree in one downward pass
without having to "back up".

» If the root node x becomes an internal node having no keys, then

» xis deleted (occur in case 3c, below)
» x's only child c,[x] becomes the new root of the tree,
» decreasing the height of the tree by one, and

» preserving the property that the root of the tree contains at least
one key.

Case 1: kisin node x and x is a leaf

» Delete the key k from x.

Case 1: F deleted.

» Case 2a: the child y that precedes k has at least t keys.
» Find the predecessor k' of k in the subtree rooted at y.
» Recursively delete k', and replace k by k' in x.

t=3

D E

Case 2a: M deleted.

» Case 2b: the child z that follows k has at least t keys.
» Find the successor k' of k in the subtree rooted at z.
» Recursively delete k', and replace k by k' in x.

t=3

D E

Case 2a: G deleted.

» Case 2c: both y and z have only t - 1 keys.
» Merge k and all of zinto y.
» Free z and recursively delete k from y.

i min '

Case 2c: G deleted.

» Determine the root ¢,[x] of the appropriate subtree that must
contain k.

» Case 3a: ¢;[x] has at least t keys
» Recursively delete k from c/[x].

» Case 3b: ¢/[x] has only t — 1 keys but has an immediate sibling
with at least t keys.

» Case 3c: ¢[x] and both of ¢/[x]'s immediate siblings have t -1
keys.

» Case 3b: ¢/[x] has only t — 1 keys but has an immediate sibling
with at least t keys.

» Give c,[x] an extra key by moving a key from x down into c¢,[x].
» Moving a key from c¢;[x]'s immediate left or right sibling up into x.
» Moving the appropriate child pointer from the sibling into c¢/[x].

Case 3b : B deleted.

» Case 3c: ¢/[x] and both of ¢[x]'s immediate siblings have t - 1 keys.

» Merge c¢[x] with one sibling.

» Moving a key from x down into the new merged node to become the
median key for that node.

t=3

-

C L

~

Y

-

I

Case 3c : D deleted.

(a) initial tree

(b) F deleted: case 1

(¢c) M deleted: case 2a

o i '

(d) G deleted: case 2¢

S| \
m‘
e

(e) D deleted: case 3b I%I
2

(e’) tree shrinks

(f) B deleted: case 3a |

in height

A

C

J

K

= e e

Time complexity

» Only O(h) disk operations for a B-tree of height h.

» Only O(1) calls to DISK-READ and DISK-WRITE are made between
recursive invocations of the procedure.

» The CPU time required is O(th) = O(tlog,n).

