
AlgorithmsChapter 18B-TreesAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Definition of B-trees
 Basic operations on B-trees
 Deleting a key from a B-tree

2

Overview1/2
 B-trees are balanced search trees designed to work well on

magnetic disks.
 B-trees are similar to red-black trees, but they are better at

minimizing disk I/O operations.
 Red-black trees
 A variation of binary search trees.
 Balanced: height is O(lgn), where n is the number of nodes.
 Operations will take O(lgn) time in the worst case.

 B-trees
 Generalize binary search trees in a natural manner.
 Balanced: height is O(lgtn), where n is the number of nodes.
 Operations will take O(t lgtn) time in the worst case, where t is the

minimum degree of the B-tree.
3

Overview2/2

 Running time of a B-tree algorithm is determined by the number
of DISK-READ and DISK-WRITE operations.
 Thus, a B-tree node is usually as large as a whole disk page.
 The "branching factors" between 50 and 2000 are often used,

depending on the size of a key relative to the size of a page.

 An internal node x containing n[x] keys has n[x]+1 children.

4

t = 2

𝑟𝑜𝑜𝑡[𝑇]

Properties of B-trees1/2
 A B-tree T is a rooted tree having the following properties:
 Every node x has the following fields:

 n[x], the number of keys in node x,
 key1[x] ≤ key2[x] ≤ ··· ≤ keyn[x][x],
 leaf[x], leaf[x] = TRUE if x is a leaf, leaf[x] = FALSE if x is an internal node.

 Each internal node x also contains n[x]+1 pointers c1[x], c2[x], ...,
cn[x]+1[x] to its children.

 If ki is any key stored in the subtree with root ci[x], then
k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ ··· ≤ keyn[x][x] ≤ kn[x]+1 .

 All leaves have the same depth, which is the tree's height h.
 Every node x other than the root must have t − 1 ≤ n[x] ≤ 2t − 1,

where t ≥ 2 is the minimum degree of the B-tree.
 If the tree is nonempty, the root has 1 ≤ n[root] ≤ 2t − 1.

5

Properties of B-trees2/2
 The simplest B-tree occurs when t = 2.
 Every internal node then has either 2, 3, or 4 children, and we

have a 2-3-4 tree.

6

Height of a B-tree1/2
 Lemma 18.1 If n ≥ 1, then for any n-key B-tree T of height h and

minimum degree t ≥ 2, ℎ ≤ log௧ ௡ାଵଶ .
Proof:
 The root contains at least one key.
 Thus, there are at least 2 nodes at depth 1.
 All other nodes contain at least t − 1 keys.
 So, at least 2t nodes at depth 2, at least 2t2 nodes at depth 3, and so

on.
 Then, we have 𝑛

7

≥ 1 + 𝑡 − 1 ෍ 2𝑡௜ିଵ௛
௜ୀଵ= 1 + 2 𝑡 − 1 𝑡௛ − 1𝑡 − 1= 2𝑡௛ − 1. ℎ ≤ log௧ 𝑛 + 12

0

1

2

3

1

2

2t

2t2

number
of nodesdepth𝑟𝑜𝑜𝑡[𝑇]

Height of a B-tree2/2

8

Outline
 Definition of B-trees
 Basic operations on B-trees
 Deleting a key from a B-tree

9

Searching a B-tree
 B-TREE-SEARCH is a straightforward generalization of the TREE-

SEARCH procedure defined for binary search trees.
 Instead of making a binary, or “two-way” branching decision at

each node, we make an (n[x]+1)-way branching decision.

 Since n[x] < 2t, the running is O(th) = O(t logtn).

10

B-TREE-SEARCH(x, k)
1. i ← 1
2. while i ≤ n[x] and k > keyi[x]
3. i ← i + 1
4. if i ≤ n[x] and k = keyi[x]
5. return (x, i)
6. elseif leaf[x]
7. return NIL
8. else DISK-READ(ci[x])
9. return B-TREE-SEARCH(ci[x], k)

 A fundamental operation used during insertion is the splitting
a full node y (having 2t − 1 keys) around its median key keyt[y]
into two nodes having t − 1 keys each.

Splitting a node in a B-tree1/2

11

Splitting a node with t = 4. Node y is split into
two nodes, y and z, and the median key S of y
is moved up into y's parent.

If y has no parent, then
the tree grows in height
by one.

𝑦 = 𝑐௜[𝑥] 𝑦 = 𝑐௜[𝑥] 𝑧 = 𝑐௜ାଵ[𝑥]
𝑥 𝑥

Splitting a node in a B-tree2/2

12

B-TREE-SPLIT-CHILD(x, i, y)
1. z ← ALLOCATE-NODE()
2. leaf[z] ← leaf[y]
3. n[z] ← t − 1
4. for j ← 1 to t − 1
5. keyj[z] ← keyj+t[y]
6. if not leaf [y]
7. for j ← 1 to t
8. cj[z] ← cj+t[y]
9. n[y] ← t − 1
10. for j ← n[x] + 1 downto i + 1
11. cj+1[x] ← cj[x]
12. ci+1[x] ← z
13. for j ← n[x] downto i
14. keyj+1[x] ← keyj[x]
15. keyi[x] ← keyt[y]
16. n[x] ← n[x] + 1
17. DISK-WRITE(y)
18. DISK-WRITE(z)
19. DISK-WRITE(x)

Θ(1)

Θ(t)

Θ(1)

Time : O(t)

Inserting a key into a B-tree1/3
 B-TREE-INSERT inserts a key k into a B-tree T of height h in a single

pass down the tree. Requiring O(h) disk accesses.
 Use B-TREE-SPLIT-CHILD to guarantee that the recursion never

descends to a full node.

 The CPU time required is O(th) = O(t logtn).
13

B-TREE-INSERT(T, k)
1. r ← root[T]
2. if n[r] = 2t − 1
3. s ← ALLOCATE-NODE()
4. root[T] ← s
5. leaf[s] ← FALSE
6. n[s] ← 0
7. c1[s] ← r
8. B-TREE-SPLIT-CHILD(s, 1, r)
9. B-TREE-INSERT-NONFULL(s, k)
10. else B-TREE-INSERT-NONFULL(r, k)

Handle the case in which the root
node r is full: the root is split and a
new node s becomes the root.

Inserting a key into a B-tree2/3
 Unlike a binary search tree, a B-tree increases in height at the

top instead of at the bottom.

14

Splitting the root with t = 4. Root node r is split
in two, and a new root node s is created.

The B-tree grows in height by
one when the root is split.

𝑟𝑜𝑜𝑡[𝑇]
𝑟𝑜𝑜𝑡[𝑇]

Inserting a key into a B-tree3/3
 B-TREE-INSERT-NONFULL inserts key k into node x, which is

assumed to be nonfull when the procedure is called.

15

B-TREE-INSERT-NONFULL(x, k)
1. i ← n[x]
2. if leaf[x]
3. while i ≥ 1 and k < keyi[x]
4. keyi+1[x] ← keyi[x]
5. i ← i – 1
6. keyi+1[x] ← k
7. n[x] ← n[x] + 1
8. DISK-WRITE(x)
9. else while i ≥ 1 and k < keyi[x]
10. i ← i – 1
11. i ← i + 1
12. DISK-READ(ci[x])
13. if n[ci[x]] = 2t – 1
14. B-TREE-SPLIT-CHILD(x, i, ci[x])
15. if k > keyi[x]
16. i ← i + 1
17. B-TREE-INSERT-NONFULL(ci[x], k)

Time : O(th)
= O(t logtn).

t = 3

(a) Initial tree

(b) B inserted

(c) Q inserted tree

(d) L inserted tree

(e) F inserted tree

Outline
 Definition of B-trees
 Basic operations on B-trees
 Deleting a key from a B-tree

17

Deleting a key into a B-tree1/3
 B-TREE-Delete deletes the key k from the subtree rooted at x.
 Guarantee that whenever B-TREE-DELETE is called recursively on a

node x, the number of keys in x is at least the minimum degree t.
 Allows us to delete a key from the tree in one downward pass

without having to "back up".

 If the root node x becomes an internal node having no keys, then
 x is deleted,
 x's only child c1[x] becomes the new root of the tree,
 decreasing the height of the tree by one, and
 preserving the property that the root of the tree contains at least

one key.

18

(occur in case 3c, below)

 Delete the key k from x.

19

Case 1: k is in node x and x is a leaf

Case 1: F deleted.

t = 3

Case 2: k is in node x and x is an internal node1/3
 Case 2a: the child y that precedes k has at least t keys.
 Find the predecessor k′ of k in the subtree rooted at y.
 Recursively delete k′, and replace k by k′ in x.

20

Case 2a: M deleted.

t = 3

Case 2: k is in node x and x is an internal node2/3
 Case 2b: the child z that follows k has at least t keys.
 Find the successor k′ of k in the subtree rooted at z.
 Recursively delete k′, and replace k by k′ in x.

21

Case 2a: G deleted.

t = 3

 Case 2c: both y and z have only t − 1 keys.
 Merge k and all of z into y.
 Free z and recursively delete k from y.

Case 2: k is in node x and x is an internal node3/3

22

Case 2c: G deleted.

t = 3

 Determine the root ci[x] of the appropriate subtree that must
contain k.

 Case 3a: ci[x] has at least t keys
 Recursively delete k from ci[x].

 Case 3b: ci[x] has only t − 1 keys but has an immediate sibling
with at least t keys.

 Case 3c: ci[x] and both of ci[x]'s immediate siblings have t − 1
keys.

Case 3: k is not present in internal node x1/3

23

 Case 3b: ci[x] has only t − 1 keys but has an immediate sibling
with at least t keys.

 Give ci[x] an extra key by moving a key from x down into ci[x].
 Moving a key from ci[x]'s immediate left or right sibling up into x.
 Moving the appropriate child pointer from the sibling into ci[x].

Case 3: k is not present in internal node x2/3

24

Case 3b：B deleted.

t = 3

 Case 3c: ci[x] and both of ci[x]'s immediate siblings have t − 1 keys.
 Merge ci[x] with one sibling.
 Moving a key from x down into the new merged node to become the

median key for that node.

Case 3: k is not present in internal node x3/3

25

Tree shrinks in height.Case 3c：D deleted.

t = 3

t = 3

t = 3

Time complexity

28

 Only O(h) disk operations for a B-tree of height h.

 Only O(1) calls to DISK-READ and DISK-WRITE are made between
recursive invocations of the procedure.

 The CPU time required is O(th) = O(t logtn).

