Algorithms

Chapter 19*
Binomial Heaps

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Binomial trees and binomial heaps
» Operations on binomial heaps

Overview

» If we don't need the UNION operation, ordinary binary heaps,
as used in heapsort, work well.

» The Fibonacci heaps are amortized time bounds.

» All of the three heaps are inefficient in their support of the
operation SEARCH.

Binary heap Binomial heap Fibonacci heap

Procedure (worst case) (worst case) (amortized)
MAKE-HEAP O(1) O(1) O(1)
INSERT O(lgn) O(lgn) O(1)
MiINIMUM O(1) O(lgn) O(1)
EXTRACT-MIN O(lgn) O(lgn) O(lgn)
UNION O(n) O(lgn) ©(1)
DECREASE-KEY O(lgn) O(lgn) O(1)
DELETE O(lgn) O(lgn) O(lgn)

» A rooted tree is a tree in which one of the vertices is
distinguished from the others.

» The distinguished vertex is called the root of the tree.

» An ordered tree is a rooted tree in which the children of each
node are ordered.

» That s, if a node has k children, then there is a first child, a
second child,..., and a kth child.

A (7) depth 0 (7)

@ 6 @ w1 @ 0 ©
height=4 (8) (1 @) (2 depti2 1 (B) @A) (2
©®® O deptn3 (D) (& (D

v () depth 4 (9

(a) (b)

» The above two trees are different when considered to be

ordered trees, but the same when considered to be just rooted
trees.

» The binomial tree B, is an ordered tree defined recursively as
follows.

» the binomial tree B, consists of a single node.

» B, consists of two B, , that are linked together: the root of one is the
leftmost child of the root of the other.

_ ()
O
o o A/
By
By
L PR
By By
@
(b) O @0 O
@ 0 00
®@ o © O
By, B B, B;

» Lemma 19.1: (Properties of binomial trees)
For the binomial tree B,, The term "binomial
1. there are 2¥ nodes, tree” comes from.
2. the height of the tree is k,
3. there are exactly \T: nodes at depthifori=0,1, .., k,
4. the root has degréé k, which is the largest, and

5. if the children of the root are numbered from left to right by
k-1,k-2,..,0,child iis the root of a subtree B..

Proof: By induction on k.
» Each property holds for B, is trivial.
» Assume that the lemma holds for B, _;.

» 1. There are 2 nodes.

» B, =two copies of B, ;, and so B, has 2k~1 + 2k-1 = 2knodes.

» 2. The height of the tree is k.
» Two copies of B, _, are linked to form B,.
» Maximum depth in B, = Maximum depth in B, _, + 1.
» By the inductive hypothesis, this maximum depthis (k-1) + 1 = k.

» 3. There are exactly m nodes at depthifori=0,1, ..., k.

"

» Let D(k, i) be the number of nodes at depth i of binomial tree B,.
D(k,i) = D(k—1,i)+ Dk—1,i—1)

k—1 k—1

— [;) + (j B 1) (by the inductive hypothesis)
k

— [) (by Exercise C.1-7) .
1

» 4. The root has degree k, which is the largest.

» The only node with greater degree in B, than in B,_, is the root,
which has one more child thanin B, _;.

» Since the root of B,_, has degree k - 1, the root of B, has degree k.

» 5. 1If the children of the root are numbered from left to right by
k-1, k-2,...,0, child i is the root of a subtree B..

» By the inductive hypothesis, the children of the root of B, _; are
rootsof B, _,, B, _3,..., B,

» When B, _,is linked to B, _,, the children of the resulting root are
rootsof B,_,, B, _,,..., By

» Corollary 19.2 The maximum degree of any node in an n-node
binomial tree is Ign. (From properties 1 and 4)

Binomial heaps

» A binomial heap H is a set of binomial trees that satisfies the
following binomial-heap properties.

1. Each binomial tree in H is min-heap ordered:
key(x) 2 key(p(x)).
2. For any nonnegative integer k, there is at most one binomial
tree in H whose root has degree k.

heaa{H]*)® >(1)

Observations

» The first property tells us that the root of a min-heap-ordered
tree contains the smallest key in the tree.

» The second property implies that an n-node binomial heap H
consists of at most |Ign|+ 1 binomial trees.

» the binary representation of n has |Ig n| + 1 bits, say
Lign], Ai
<byignps Byign|-1/--bo>, SO that n= Zizo bh2'.

» By property 1 of Lemma 19.1, binomial tree B; appears in H if and
only if bit b, = 1.

heaa{H]H@ >(1)

lgn]|” ~|lgn

binary representation
=<1,1,0, 1>

Representing binomial heaps

» In a binomial heap:
» binomial tree is stored in the left-child, right-sibling representation.
» key[x]: key; p[x]: parent; child|x]: leftmost children.
» sibling[x]: immediately right sibling;
» degree[x]: the number of children.

=7
10 1 6
0 2 3
head H)—>/] Z A > A
P / //
key —[12 25 3 14 29
degree — N (l) 2 N = (‘)
hild ~~ - ———— -
- Y (R sibling /\ rA
The degrees of the 1 1 1 =
roots strictly ' i [
. /
increase as we il
traverse the root list. !

Outline

» Binomial trees and binomial heaps
» Operations on binomial heaps

Operations on binomial heaps

» MAKE-BINOMIAL-HEAP():
» Allocate and return an object H, where head[H] = NIL.
» Running time = O(1).

» BINOMIAL-HEAP-MINIMUM(H): BINOMIAL-HEAP-MINIMUM(H)

» Since a binomial heap is y Nt
in-h g d th X < head[H]
min-heap-ordered, the min < oo

minimum key must reside
in a root node.

while x # NIL
do if key[x] < min
then min < key[x]
y X
x < sibling[x]

» At most [lgn]+1 roots to
check.

O o N o U bk W E

» Running time = O(lgn). return y

Operations on binomial heaps

» BINOMIAL-LINK(y, 2):
» B,_,rooted aty + B,_, rooted at z =» B, rooted at z.

» Running time = O(1).

BINOMIAL-LINK(y, 2)

1. plyl«z

2 sibling[y] < child|[z]

3. child[z] <y

4 degree|z] < degree[z] + 1

» BINOMIAL-HEAP-MERGE(H,, H,):

» Merges the root lists of H; and H, into a single linked list that is
sorted by degree into monotonically increasing order.

» Pseudocode is left as Exercise 19.2-1.

Uniting two binomial heaps

» BINOMIAL-HEAP-UNION(H,, H,):

» Phase 1: merge the root lists of H; and H, into a single linked list H
in monotonically increasing order.

» Phase 2: link roots of equal degree until at most one root remains
of each degree.

» Running time = O(lgn).
» Phase 1:

» Running time = O(lgn,) + O(lgn,).
» Phase 2:

» Each iteration of the while loop takes O(1) time.

H, : n; nodes;
H, : n, nodes.

» There are at most |lgn,| + |lIgn,| + 2 iterations .

Each iteration either advances the pointers one position or removes a root.

» Running time = O(lgn,) + O(lgn,).

BINOMIAL-HEAP-UNION(H,, H,)

1. H < MAKE-BINOMIAL-HEAP()
2. head[H] < BINOMIAL-HEAP-MERGE(H,, H,)
3. free the objects H, and H, but not the lists they point to
4. if head[H] = NIL
5. then return H
6. prev-x <— NIL
7. X < head[H]
8. next-x < sibling[x]
9. while next-x # NIL
10. do if (degree[x] # degree[next-x]) or
(sibling[next-x] # NIL and degree|[sibling[next-x]] = degree[x])
11. then prev-x < x > Cases 1 and 2
12. X <— next-x > Cases 1 and 2
13. else if key[x] < key[next-x]
14. then sibling[x] < sibling[next-x] > Case 3
15. BINOMIAL-LINK(next-x, x) > Case 3
16. else if prev-x = NIL > Case 4
17. then head[H] < next-x > Case 4
18. else sibling[prev-x] < next-x > Case 4
19. BINOMIAL-LINK(x, next-x) > Case 4
20. X < next-x > Case 4
21. next-x < sibling[x]

22. return H
18

(a) head[H,]

BINOMIAL-HEAP-MERGE

(b) head[H)

(¢) head[H]

19

20

prev-x

(e) head| H] *)Q‘? >(3)
@5

prev-x

() head[H] QQ‘?

Case 1

21

(a)

(b)

prev-x X next-x sibling] next-x|

By b
prev-x X next-x
Case 1_I
By b
prev-x X next-x sibling| next-x]

(@ b) (© C)

A /\

By By By

prev-x next-x sibling[next- x]

NYVYYS

key[x] < key[nex{-x]

prev-x X next-x
a >(D
Case 3‘|
= b
By
B+

prev-x ¥ next-x sibling] next-x]

By By B,

key| x] > key| next-x|

22

Insert & Extract-Min

» BINOMIAL-HEAP-INSERT(H, x):
» Running time = O(lgn).

BINOMIAL-HEAP-INSERT(H, X)
1. make a one-node binomial heap H' containing x
2. H <— BINOMIAL-HEAP-UNION(H, H')

» BINOMIAL-HEAP-EXTRACT-MIN(H):
» Running time = O(lgn).

BINOMIAL-HEAP-EXTRACT-MIN(H)
1. find the root x with the minimum key in the root list of H,
and remove x from the root list of H
H' <~ MAKE-BINOMIAL-HEAP()
reverse the order of the linked list of x's children,
and set head[H’] to point to the head of the resulting list
: H <— BINOMIAL-HEAP-UNION(H, H')
5. return x

24

(b) head H]

(c) head H|

(d) head| H]

Decrease-Key & Delete

» BINOMIAL-HEAP-DECREASE-KEY(H, x, k):
» Running time = O(depth of x) = O(lgn).

BINOMIAL-HEAP-DECREASE-KEY(H, X, k)
if k > key[x]
then error "new key is greater than current key”
key[x] < k
y < X
z < plyl
while z # NIL and key|[y] < key|[z]

d h k k
o ochanee YW kevlel) - BiNOMIAL-HEAP-DELETE(H):

z < ply] » Running time = O(lgn).

O 0 N UL kEWDNRE

BINOMIAL-HEAP-DELETE(H, x)
1. BINOMIAL-HEAP-DECREASE-KEY(H, X, -o°)
2. BINOMIAL-HEAP-EXTRACT-MIN(H)

26

head| H)

25

12

37) 19
4

