
AlgorithmsChapter 19*Binomial HeapsAssociate Professor: Ching-Chi Lin
林清池 副教授chingchi.lin@gmail.comDepartment of Computer Science and EngineeringNational Taiwan Ocean University

Outline
 Binomial trees and binomial heaps
 Operations on binomial heaps

2

Overview
 If we don't need the UNION operation, ordinary binary heaps,

as used in heapsort, work well.
 The Fibonacci heaps are amortized time bounds.
 All of the three heaps are inefficient in their support of the

operation SEARCH.

3

Procedure
Binary heap
(worst case)

Binomial heap
(worst case)

Fibonacci heap
(amortized)

MAKE-HEAP Θ(1) Θ(1) Θ(1)
INSERT Θ(lgn) Θ(lgn) Θ(1)
MINIMUM Θ(1) Θ(lgn) Θ(1)
EXTRACT-MIN Θ(lgn) Θ(lgn) Θ(lgn)
UNION Θ(n) Θ(lgn) Θ(1)
DECREASE-KEY Θ(lgn) Θ(lgn) Θ(1)
DELETE Θ(lgn) Θ(lgn) Θ(lgn)

Rooted and ordered trees1/2
 A rooted tree is a tree in which one of the vertices is

distinguished from the others.

 The distinguished vertex is called the root of the tree.

 An ordered tree is a rooted tree in which the children of each
node are ordered.

 That is, if a node has k children, then there is a first child, a
second child,..., and a kth child.

4

Rooted and ordered trees2/2

 The above two trees are different when considered to be
ordered trees, but the same when considered to be just rooted
trees.

5

Binomial trees1/2
 The binomial tree Bk is an ordered tree defined recursively as

follows.
 the binomial tree B0 consists of a single node.
 Bk consists of two Bk-1 that are linked together: the root of one is the

leftmost child of the root of the other.

6

Binomial trees2/2

7

Another way of looking at the binomial tree Bk.

Properties of binomial trees1/3
 Lemma 19.1: (Properties of binomial trees)

For the binomial tree Bk,
1. there are 2k nodes,
2. the height of the tree is k,
3. there are exactly nodes at depth i for i = 0, 1, ..., k,
4. the root has degree k, which is the largest, and
5. if the children of the root are numbered from left to right by

k − 1, k − 2,..., 0, child i is the root of a subtree Bi.

Proof: By induction on k.
 Each property holds for B0 is trivial.
 Assume that the lemma holds for Bk−1.

8

The term "binomial
tree" comes from.

Properties of binomial trees2/3
 1. There are 2k nodes.
 Bk = two copies of Bk-1, and so Bk has 2k−1 + 2k−1 = 2k nodes.

 2. The height of the tree is k.
 Two copies of Bk− 1 are linked to form Bk.
 Maximum depth in Bk = Maximum depth in Bk− 1 + 1.
 By the inductive hypothesis, this maximum depth is (k−1) + 1 = k.

 3. There are exactly nodes at depth i for i = 0, 1, ..., k.
 Let D(k, i) be the number of nodes at depth i of binomial tree Bk.

9

Properties of binomial trees3/3
 4. The root has degree k, which is the largest.
 The only node with greater degree in Bk than in Bk − 1 is the root,

which has one more child than in Bk − 1.
 Since the root of Bk − 1 has degree k − 1, the root of Bk has degree k.

 5. If the children of the root are numbered from left to right by
k−1, k−2,..., 0, child i is the root of a subtree Bi.

 By the inductive hypothesis, the children of the root of Bk − 1 are
roots of Bk − 2 , Bk − 3,..., B0.

 When Bk − 1 is linked to Bk− 1, the children of the resulting root are
roots of Bk − 1, Bk − 2,..., B0.

 Corollary 19.2 The maximum degree of any node in an n-node
binomial tree is lgn. (From properties 1 and 4)

10

Binomial heaps
 A binomial heap H is a set of binomial trees that satisfies the

following binomial-heap properties.
1. Each binomial tree in H is min-heap ordered:

key(x) ≥ key(p(x)).
2. For any nonnegative integer k, there is at most one binomial

tree in H whose root has degree k.

11

Observations
 The first property tells us that the root of a min-heap-ordered

tree contains the smallest key in the tree.
 The second property implies that an n-node binomial heap H

consists of at most ⌊lgn⌋+ 1 binomial trees.
 the binary representation of n has ⌊lg n⌋ + 1 bits, say

<b⌊lgn⌋, b⌊lgn⌋−1,…,b0>, so that .
 By property 1 of Lemma 19.1, binomial tree Bi appears in H if and

only if bit bi = 1.

12

  =
= n

i
i

ibn lg

0
2

binary representation
= <1, 1, 0, 1>

Representing binomial heaps
 In a binomial heap:
 binomial tree is stored in the left-child, right-sibling representation.
 key[x]: key; p[x]: parent; child[x]: leftmost children.
 sibling[x]: immediately right sibling;
 degree[x]: the number of children.

13

The degrees of the
roots strictly
increase as we
traverse the root list.

Outline
 Binomial trees and binomial heaps
 Operations on binomial heaps

14

Operations on binomial heaps
 MAKE-BINOMIAL-HEAP():
 Allocate and return an object H, where head[H] = NIL.
 Running time = Θ(1).

 BINOMIAL-HEAP-MINIMUM(H):
 Since a binomial heap is

min-heap-ordered, the
minimum key must reside
in a root node.

 At most ⌊lgn⌋+1 roots to
check.

 Running time = O(lgn).

15

BINOMIAL-HEAP-MINIMUM(H)
1. y ← NIL
2. x ← head[H]
3. min ← ∞
4. while x ≠ NIL
5. do if key[x] < min
6. then min ← key[x]
7. y ← x
8. x ← sibling[x]
9. return y

Operations on binomial heaps
 BINOMIAL-LINK(y, z):
 Bk − 1 rooted at y + Bk− 1 rooted at z  Bk rooted at z.
 Running time = Θ(1).

 BINOMIAL-HEAP-MERGE(H1, H2):
 Merges the root lists of H1 and H2 into a single linked list that is

sorted by degree into monotonically increasing order.
 Pseudocode is left as Exercise 19.2-1.

16

BINOMIAL-LINK(y, z)
1. p[y] ← z
2. sibling[y] ← child[z]
3. child[z] ← y
4. degree[z] ← degree[z] + 1

Uniting two binomial heaps
 BINOMIAL-HEAP-UNION(H1, H2):
 Phase 1: merge the root lists of H1 and H2 into a single linked list H

in monotonically increasing order.
 Phase 2: link roots of equal degree until at most one root remains

of each degree.
 Running time = O(lgn).

 Phase 1:
 Running time = O(lgn1) + O(lgn2).

 Phase 2:
 Each iteration of the while loop takes O(1) time.
 There are at most ⌊lgn1⌋ + ⌊lgn2⌋ + 2 iterations .

 Each iteration either advances the pointers one position or removes a root.
 Running time = O(lgn1) + O(lgn2).

17

H1 : n1 nodes;
H2 : n2 nodes.

BINOMIAL-HEAP-UNION(H1, H2)
1. H ← MAKE-BINOMIAL-HEAP()
2. head[H] ← BINOMIAL-HEAP-MERGE(H1, H2)
3. free the objects H1 and H2 but not the lists they point to
4. if head[H] = NIL
5. then return H
6. prev-x ← NIL
7. x ← head[H]
8. next-x ← sibling[x]
9. while next-x ≠ NIL
10. do if (degree[x] ≠ degree[next-x]) or

(sibling[next-x] ≠ NIL and degree[sibling[next-x]] = degree[x])
11. then prev-x ← x ▹ Cases 1 and 2
12. x ← next-x ▹ Cases 1 and 2
13. else if key[x] ≤ key[next-x]
14. then sibling[x] ← sibling[next-x] ▹ Case 3
15. BINOMIAL-LINK(next-x, x) ▹ Case 3
16. else if prev-x = NIL ▹ Case 4
17. then head[H] ← next-x ▹ Case 4
18. else sibling[prev-x] ← next-x ▹ Case 4
19. BINOMIAL-LINK(x, next-x) ▹ Case 4
20. x ← next-x ▹ Case 4
21. next-x ← sibling[x]
22. return H

18

19

20

21

22

Insert & Extract-Min
 BINOMIAL-HEAP-INSERT(H, x):
 Running time = O(lgn).

 BINOMIAL-HEAP-EXTRACT-MIN(H):
 Running time = O(lgn).

23

BINOMIAL-HEAP-INSERT(H, x)
1. make a one-node binomial heap H′ containing x
2. H ← BINOMIAL-HEAP-UNION(H, H′)

BINOMIAL-HEAP-EXTRACT-MIN(H)
1. find the root x with the minimum key in the root list of H,

and remove x from the root list of H
2. H′ ← MAKE-BINOMIAL-HEAP()
3. reverse the order of the linked list of x's children,

and set head[H′] to point to the head of the resulting list
4. H ← BINOMIAL-HEAP-UNION(H, H′)
5. return x

24

Decrease-Key & Delete
 BINOMIAL-HEAP-DECREASE-KEY(H, x, k):
 Running time = O(depth of x) = O(lgn).

25

BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
1. if k > key[x]
2. then error "new key is greater than current key“
3. key[x] ← k
4. y ← x
5. z ← p[y]
6. while z ≠ NIL and key[y] < key[z]
7. do exchange key[y] ↔ key[z]
8. y ← z
9. z ← p[y]

 BINOMIAL-HEAP-DELETE(H):
 Running time = O(lgn).
BINOMIAL-HEAP-DELETE(H, x)
1. BINOMIAL-HEAP-DECREASE-KEY(H, x, -∞)
2. BINOMIAL-HEAP-EXTRACT-MIN(H)

26

