Algorithms Chapter 19* Binomial Heaps

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- **▶** Binomial trees and binomial heaps
- Operations on binomial heaps

Overview

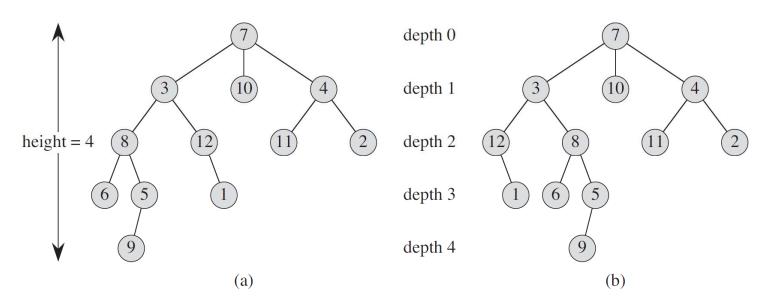
- ▶ If we don't need the UNION operation, ordinary binary heaps, as used in heapsort, work well.
- ▶ The Fibonacci heaps are amortized time bounds.
- ▶ All of the three heaps are inefficient in their support of the operation SEARCH.

Procedure	Binary heap (worst case)	Binomial heap (worst case)	Fibonacci heap (amortized)
Маке-Неар	Θ (1)	Θ (1)	Θ(1)
Insert	$\Theta(\lg n)$	$\Theta(\lg n)$	Θ (1)
Мінімим	Θ (1)	$\Theta(\lg n)$	Θ (1)
Extract-Min	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$
Union	$\Theta(n)$	$\Theta(\lg n)$	Θ (1)
Decrease-Key	$\Theta(\lg n)$	$\Theta(\lg n)$	Θ (1)
DELETE	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$

Rooted and ordered trees_{1/2}

- ▶ A **rooted tree** is a tree in which one of the vertices is distinguished from the others.
- ▶ The distinguished vertex is called the root of the tree.
- An ordered tree is a rooted tree in which the children of each node are ordered.
- ▶ That is, if a node has *k* children, then there is a first child, a second child,..., and a *k*th child.

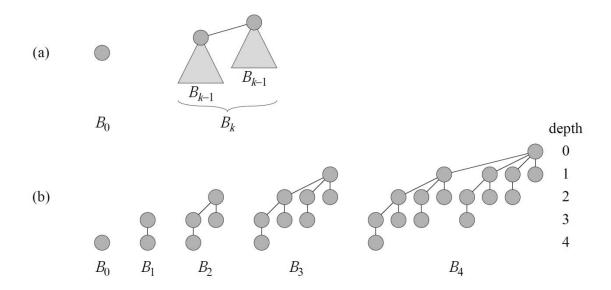
Rooted and ordered trees_{2/2}



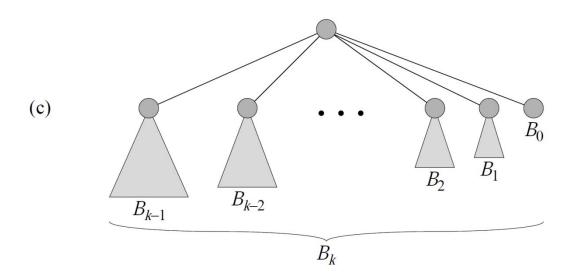
The above two trees are different when considered to be ordered trees, but the same when considered to be just rooted trees.

Binomial trees_{1/2}

- ▶ The **binomial tree** B_k is an ordered tree defined recursively as follows.
 - the binomial tree B_0 consists of a single node.
 - ▶ B_k consists of two B_{k-1} that are **linked** together: the root of one is the leftmost child of the root of the other.



Binomial trees_{2/2}



Another way of looking at the binomial tree B_k .

Properties of binomial trees_{1/3}

▶ Lemma 19.1: (Properties of binomial trees)

For the binomial tree B_k ,

- 1. there are 2^k nodes,
- 2. the height of the tree is *k*,
- 3. there are exactly $\binom{k}{i}$ nodes at depth i for i = 0, 1, ..., k,
- 4. the root has degree k, which is the largest, and
- 5. if the children of the root are numbered from left to right by k-1, k-2,..., 0, child i is the root of a subtree B_i .

The term "binomial

tree" comes from.

Proof: By induction on *k*.

- Each property holds for B_0 is trivial.
- Assume that the lemma holds for B_{k-1} .

Properties of binomial trees_{2/3}

- ightharpoonup 1. There are 2^k nodes.
 - ▶ B_k = two copies of B_{k-1} , and so B_k has $2^{k-1} + 2^{k-1} = 2^k$ nodes.
- ▶ 2. The height of the tree is *k*.
 - ▶ Two copies of B_{k-1} are linked to form B_k .
 - Maximum depth in B_k = Maximum depth in B_{k-1} + 1.
 - ▶ By the inductive hypothesis, this maximum depth is (k-1) + 1 = k.
- ▶ 3. There are exactly $\binom{k}{i}$ nodes at depth i for i = 0, 1, ..., k.
 - Let D(k, i) be the number of nodes at depth i of binomial tree B_k .

$$D(k, i) = D(k-1, i) + D(k-1, i-1)$$

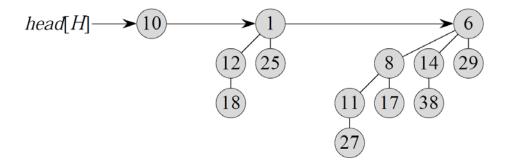
$$= {\binom{k-1}{i}} + {\binom{k-1}{i-1}}$$
 (by the inductive hypothesis)
$$= {\binom{k}{i}}$$
 (by Exercise C.1-7).

Properties of binomial trees_{3/3}

- ▶ 4. The root has degree *k*, which is the largest.
 - ▶ The only node with greater degree in B_k than in B_{k-1} is the root, which has one more child than in B_{k-1} .
 - ▶ Since the root of B_{k-1} has degree k-1, the root of B_k has degree k.
- ▶ 5. If the children of the root are numbered from left to right by k-1, k-2,..., 0, child i is the root of a subtree B_i .
 - ▶ By the inductive hypothesis, the children of the root of B_{k-1} are roots of B_{k-2} , B_{k-3} ,..., B_0 .
 - When B_{k-1} is linked to B_{k-1} , the children of the resulting root are roots of B_{k-1} , B_{k-2} ,..., B_0 .
- ▶ Corollary 19.2 The maximum degree of any node in an *n*-node binomial tree is lg *n*. (From properties 1 and 4)

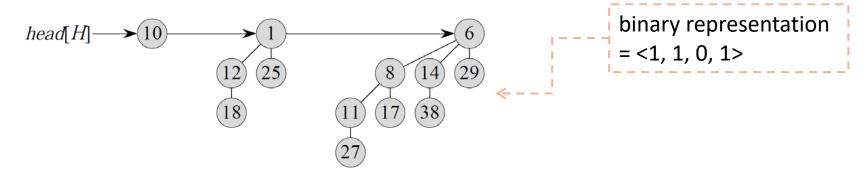
Binomial heaps

- ▶ A binomial heap H is a set of binomial trees that satisfies the following binomial-heap properties.
 - 1. Each binomial tree in H is min-heap ordered: $key(x) \ge key(p(x))$.
 - 2. For any nonnegative integer *k*, there is at most one binomial tree in *H* whose root has degree *k*.



Observations

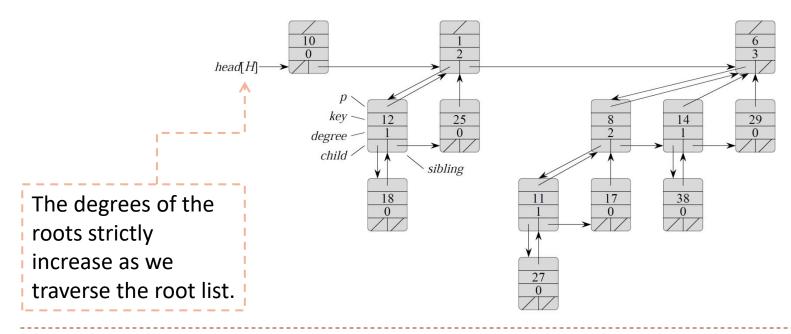
- The first property tells us that the root of a min-heap-ordered tree contains the smallest key in the tree.
- ▶ The second property implies that an n-node binomial heap H consists of at most ||gn|+ 1 binomial trees.
 - the binary representation of n has $\lfloor \lg n \rfloor + 1$ bits, say $\langle b_{\lfloor \lg n \rfloor}, b_{\lfloor \lg n \rfloor 1}, ..., b_0 \rangle$, so that $n = \sum_{i=0}^{\lfloor \lg n \rfloor} b_i 2^i$.
 - ▶ By property 1 of Lemma 19.1, binomial tree B_i appears in H if and only if bit $b_i = 1$.



Representing binomial heaps

▶ In a binomial heap:

- binomial tree is stored in the left-child, right-sibling representation.
- key[x]: key; p[x]: parent; child[x]: leftmost children.
- sibling[x]: immediately right sibling;
- degree[x]: the number of children.



Outline

- Binomial trees and binomial heaps
- Operations on binomial heaps

Operations on binomial heaps

- ► MAKE-BINOMIAL-HEAP():
 - ▶ Allocate and return an object H, where head[H] = NIL.
 - Running time = $\Theta(1)$.
- \blacktriangleright BINOMIAL-HEAP-MINIMUM(H):
 - Since a binomial heap is min-heap-ordered, the minimum key must reside in a root node.
 - At most [lgn]+1 roots to check.
 - Running time = $O(\lg n)$.

```
BINOMIAL-HEAP-MINIMUM(H)
```

```
    y ← NIL
    x ← head[H]
    min ← ∞
    while x ≠ NIL
    do if key[x] < min</li>
    then min ← key[x]
    y ← x
    x ← sibling[x]
```

return y

9.

Operations on binomial heaps

\blacktriangleright BINOMIAL-LINK(y, z):

- ▶ B_{k-1} rooted at $y + B_{k-1}$ rooted at $z \rightarrow B_k$ rooted at z.
- Running time = $\Theta(1)$.

BINOMIAL-LINK(y, z)

- 1. $p[y] \leftarrow z$
- 2. $sibling[y] \leftarrow child[z]$
- 3. $child[z] \leftarrow y$
- 4. $degree[z] \leftarrow degree[z] + 1$

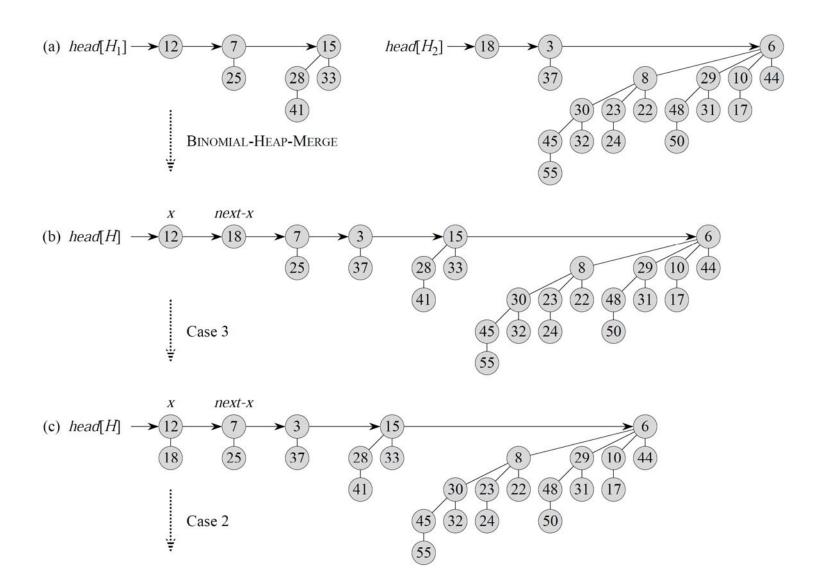
▶ BINOMIAL-HEAP-MERGE(H_1, H_2):

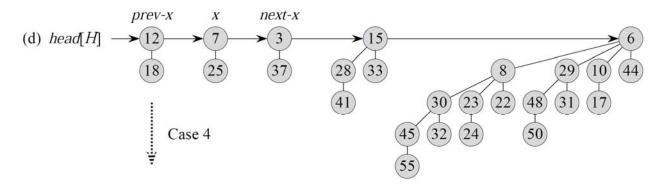
- Merges the root lists of H_1 and H_2 into a single linked list that is sorted by degree into monotonically increasing order.
- Pseudocode is left as Exercise 19.2-1.

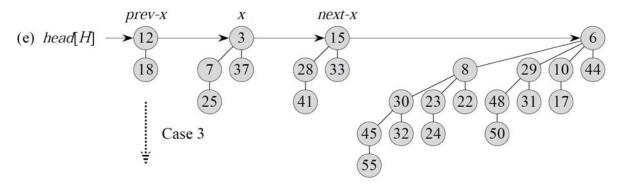
Uniting two binomial heaps

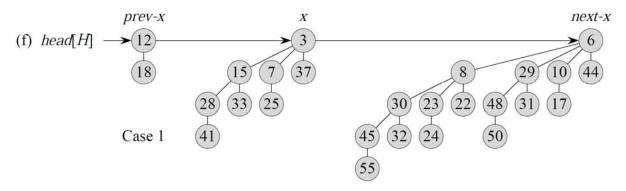
- ▶ BINOMIAL-HEAP-UNION (H_1, H_2) :
 - ▶ Phase 1: merge the root lists of H_1 and H_2 into a single linked list H_2 in monotonically increasing order.
 - Phase 2: link roots of equal degree until at most one root remains of each degree.
 - Running time = $O(\lg n)$.
- Phase 1:
- Running time = $O(\lg n_1) + O(\lg n_2)$. \leftarrow Phase 2:
- Phase 2:
 - \blacktriangleright Each iteration of the **while** loop takes O(1) time.
 - ▶ There are at most $|\lg n_1| + |\lg n_2| + 2$ iterations.
 - Each iteration either advances the pointers one position or removes a root.
 - Running time = $O(\lg n_1) + O(\lg n_2)$.

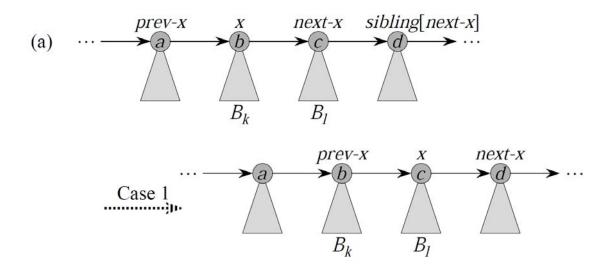
```
BINOMIAL-HEAP-UNION(H_1, H_2)
       H \leftarrow Make-Binomial-Heap()
       head[H] \leftarrow BINOMIAL-HEAP-MERGE(H_1, H_2)
      free the objects H_1 and H_2 but not the lists they point to
3.
       if head[H] = NIL
4.
          then return H
5.
      prev-x \leftarrow NIL
6.
      x \leftarrow head[H]
7.
      next-x \leftarrow sibling[x]
8.
      while next-x \neq NIL
9.
             do if (degree[x] \neq degree[next-x]) or
10.
                   (sibling[next-x] \neq NIL and degree[sibling[next-x]] = degree[x])
                                                                           ▷ Cases 1 and 2
                   then prev-x \leftarrow x
11.
                         x \leftarrow next-x
                                                                           Cases 1 and 2
12.
                   else if key[x] \le key[next-x]
13.
                           then sibling[x] \leftarrow sibling[next-x]
                                                                           ▷ Case 3
14.
                                 BINOMIAL-LINK(next-x, x)
                                                                           ▷ Case 3
15.
                           else if prev-x = NIL
                                                                           ▷ Case 4
16.
                                   then head[H] \leftarrow next-x
                                                                           ▷ Case 4
17.
                                   else sibling[prev-x] \leftarrow next-x
                                                                           ▷ Case 4
18.
                                BINOMIAL-LINK(x, next-x)
                                                                           ▷ Case 4
19.
                                x \leftarrow next-x
                                                                           ▷ Case 4
20.
                 next-x \leftarrow sibling[x]
21.
       return H
22.
```

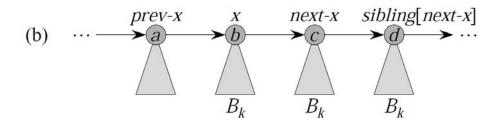


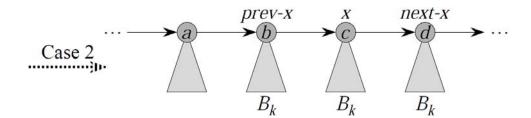


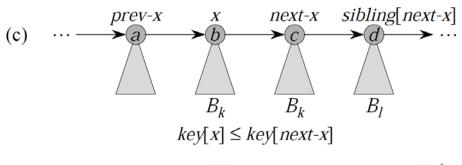


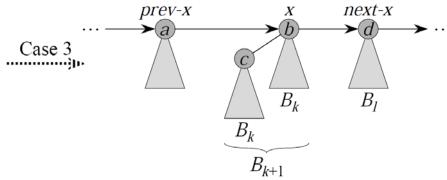


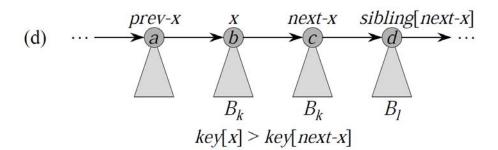


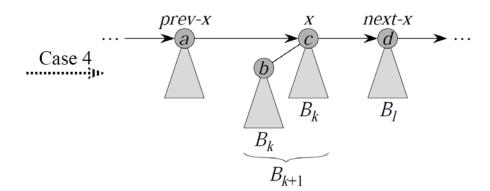












Insert & Extract-Min

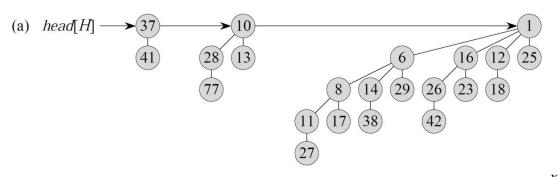
- \blacktriangleright BINOMIAL-HEAP-INSERT(H, x):
 - Running time = $O(\lg n)$.

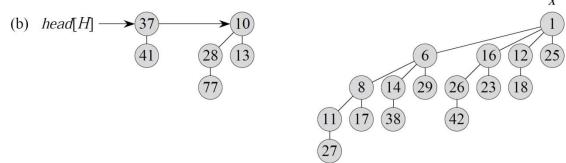
BINOMIAL-HEAP-INSERT(H, x)

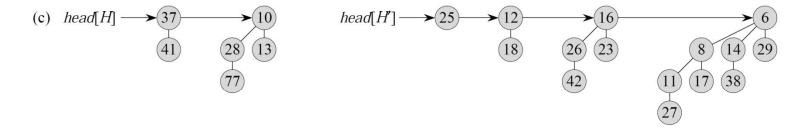
- 1. make a one-node binomial heap H' containing x
- 2. $H \leftarrow BINOMIAL-HEAP-UNION(H, H')$
- ▶ BINOMIAL-HEAP-EXTRACT-MIN(*H*):
 - Running time = $O(\lg n)$.

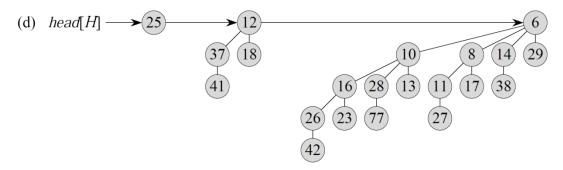
BINOMIAL-HEAP-EXTRACT-Min(H)

- 1. find the root x with the minimum key in the root list of H, and remove x from the root list of H
- 2. $H' \leftarrow Make-Binomial-Heap()$
- reverse the order of the linked list of x's children, and set head[H'] to point to the head of the resulting list
- 4. $H \leftarrow BINOMIAL-HEAP-UNION(H, H')$
- 5. return *x*









Decrease-Key & Delete

- \blacktriangleright BINOMIAL-HEAP-DECREASE-KEY(H, x, k):
 - Running time = $O(\text{depth of } x) = O(\lg n)$.

```
BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
      if k > kev[x]
         then error "new key is greater than current key"
2.
     key[x] \leftarrow k
     y \leftarrow x
5. z \leftarrow p[y]
     while z \neq NIL and key[y] < key[z]
             do exchange key[y] \leftrightarrow key[z]
                                                 BINOMIAL-HEAP-DELETE(H):
8.
                V \leftarrow Z
                z \leftarrow p[v]
                                                  • Running time = O(\lg n).
                                                 BINOMIAL-HEAP-DELETE(H, x)
                                                        BINOMIAL-HEAP-DECREASE-KEY(H, x, -\infty)
                                                        BINOMIAL-HEAP-EXTRACT-MIN(H)
```

