Algorithms

Chapter 17
Amortized Analysis

Associate Professor: Ching-Chi Lin
Hoit i Bl

chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University

Outline

» Aggregate analysis

» The accounting method
» The potential method

» Dynamic tables

Amortized analysis

» Analyze a sequence of operations on a data structure.

» Goal: Show that although some individual operations may be
expensive, on average the cost per operation is small.

» Average in this context does not mean that we’re averaging over a
distribution of inputs.

» No probability is involved.
» We're talking about average cost in the worst case.

» We show that for all n, a sequence of n operations takes
worst-case time T(n) in total.

Example 1: Stack operations

» Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S, k).

» PUSH(S, x): push object x onto stack S.

» Each runsin O(1) time.
» A sequence of n PUSH operations takes O(n) time.

» POP(S): pop the top of stack S and returns the popped object.

» Each runsin O(1) time.
» A sequence of n POP operations takes O(n) time.

» MULTIPOP(S,k)

1. while not STACK-EMPTY(S) and k>0
2. PoP(S)
3. k< k-1

» Running time of MULTIPOP(S, k):

» Let each PusH/PoOP cost O(1).

» The number of iterations of while loop is min(s, k), where
s = number of objects on stack.

» Therefore, total cost = min(s, k).

» The running time of a sequence of n PUSH, POP, MULTIPOP
operations?

» Analysis(l):
» Worst-case cost of MULTIPOP is O(n).
» Have n operations.
» Therefore, worst-case cost of sequence is O(n?).

» Analysis(ll):
» Each object can be popped only once per time that it’s pushed.
» At most n objects are pushed into S.
» Have < n PusHes = < n Pops, including those in MULTIPOP.
» Therefore, total cost = O(n).
» Average cost of an operation = O(1).

» Emphasize again, no probabilistic reasoning was involved.
» Showed worst-case O(n) cost for sequence.
» Therefore, O(1) per operation on average.

Example 2: Incrementing a binary counter

» k-bit binary counter A[O .. k - 1] of bits

» A[O] is the least significant bit. Counter Total

A @D A QS
» Alk - 1] is the most 5|gn|ﬁcant bit, VAUE SRR cost
0 00000 0
» Value of counter is ZA[I 2 1 00000 1
= 2 00000 3
Initially, counter value is O. 3 00000 4
4 00000 7
5 00000 8
» To add 1 (modulo 2¥), we use the 6 00000 10
' 7 000O0O0 11
following procedure. © 00001 -
9 00001 16
INCREMENT(A) 10 0000 1 18
A 11 00001 19
2. whilei<kandAli] =1 12 00001 22
3 Alil <0 13 0000O01 23
a. je—i+1 14 00001 25
5 ifi<k 15 0 0 O (26
6 then A[i] « 1 16 000 31

Running time analysis

» The running time of a sequence of n INCREMENT operations ?

» Analysis(l) :
» A single execution of INCREMENT takes time O(k) in the worst case.
» Have n operations.
» Therefore, worst-case cost of sequence is O(nK).
» Average cost of an operation = O(k).

» Analysis(ll):
» A[O] flips every time, A[1] flips only every other time, A[2] flips only
every fourth time, and so on.
» Total number of flips is T(n) =n +Ln/2]+|n/a]+ ...
<2n

» Average cost of an operation = O(1).

Outline

» Aggregate analysis

» The accounting method
» The potential method

» Dynamic tables

» Assign different charges to different operations.
» Some are charged more than actual cost.
» Some are charged less.

» The amount we charge an operation is called its amortized cost.

» When amortized cost > actual cost, store (amortized cost -
actual cost) on specific objects in the data structure as credit.

» Use credit later to pay for operations whose
actual cost > amortized cost.

» Differs from aggregate analysis:

» In the accounting method, different operations can have different
costs.

» In aggregate analysis, all operations have same cost.

» Need credit to never go negative.

» Otherwise, have a sequence of operations for which the amortized
cost is not an upper bound on actual cost.

» Amortized cost would tell us nothing.

» Let ¢; = actual cost of ith operation,
C.= amortized cost of ith operation.

n n
» Then require) ¢ =) g for all sequences of n operations.
i=1 i=1

n n
» Total credit stored in the data structure = ZQ —ZQ.

i=1 i=1

Example 1: Stack operations

operation actual cost amortized cost

PUSH 1 2
Pop 1 0
MULTIPOP min(k, s) 0

» Intuition: When pushing an object, pay 2.

S1 pays for the PusH.
S1is prepayment for it being popped by either POpP or MULTIPOP.
Since each object has $1, which is credit, the credit > 0.

v Vv VvV Vv

Therefore, total amortized cost < 2n, is an upper bound on total
actual cost.

» Average cost of an operation = O(1).

Example 2: Incrementing a binary counter

» Charge S2 to set a bit to 1.

» S1 pays for setting a bit to 1.

» S1is prepayment for flipping it back to O.

» Have S1 of credit for every 1 in the counter.
» Therefore, credit > 0.

» Amortized cost of INCREMENT:

» Cost of resetting bits to 0 is paid by credit.
» At most 1 bitis set to 1.

» Therefore, amortized cost < S2.

» For n operations, amortized cost = O(n).

» Average cost of an operation = O(1).

Outline

» Aggregate analysis

» The accounting method
» The potential method
» Dynamic tables

» Like the accounting method, but think of the credit as potential
stored with the entire data structure.

» Can release potential to pay for future operations.
» Most flexible of the amortized analysis methods.

» Let D, = data structure after jith operation,
D, = initial data structure,
¢; = actual cost of jith operation,
C, = amortized cost of ith operation.

» Potential function® : D, — R
» O(D)) is the potential associated with data structure D..

¢ =C+P(D)-D(D)

Y

increase in potential due to ith operation

n
» Totalamortizedcost=) &

i=1

— Z(C' +®(D,)-d(D,,))

=6 +@(D,)-(D,)

» If we require that ®(D;) > ®(D,) for all i, then the amortized cost
is always an upper bound on actual cost.

» In practice: ®(D,) =0, ®(D,) = 0 for all i.

Example 1: Stack operations

» @ =# of objects in stack.

» D, =empty stack = ®(D,) = 0.

» Since # of objects in stack 2 0, ®(D;) 2 0 = ®(D,) for all i.
operation actualcost ®(D,)-®P(D; ;) amortized cost
PUSH 1 (s+1)-s=1 1+1=2
PoP 1 (s-1)-s=-1 1-1=0
MuULTIPOP k’=min(k,s) (s-k)-s=-k k' -k' =0

s = # of objects initially.

» Therefore, amortized cost of a sequence of n operations

=Zn:éi =0(n).

» @ =ph,=# of 1’s after ith INCREMENT.

» D, = all bits are set to zero = ®(D,) = 0.
» Suppose ith operation resets t; bits to 0.

» ¢; <t + 1. (resets t; bits, sets at most one bit to 1)

» If b; =0, the jith operation reset all k bits and didn’t set one, so

» If b, >0, the ith operation reset t; bits, set one,sob,=b,_, - t; + 1.

» Ineithercase, b;<b,_, -t +1.

» Therefore, ®(D)-®(D_)=h-h,

S(b—l _ti +1)_b—1
=1-1,.

» The amortized cost is therefore ¢ =¢ +®(D,)-d(D._,)
<(t+DhH+d-t)
= 2.

n
» Thus, amortized cost of n operations = Z C = O(n).
=1

Outline

» Aggregate analysis

» The accounting method
» The potential method

» Dynamic tables

» Scenario

» Have a table — maybe a hash table.
» Don’t know in advance how many objects will be stored in it.

» When it fills, must reallocate with a larger size, copying all objects
into the new, larger table.

» When it gets sufficiently small, might want to reallocate with a
smaller size.

» Initially, T is a table of size 0.

» Perform a sequence of n operations on T, each of which is either
Insert or Delete.

» Goals

» O(1) amortized time per operation.
» Unused space always < constant fraction of allocated space.

» Load factor a(T)
» a(T) = num|[T]/size[T]
num[T] = # items stored, size[T] = allocated size.
» If size[T] =0, then num[T] = 0. Define a = 1.
» Never allow a > 1.

» Keep a > a constant fraction.

Table expansion

TABLE-INSERT (T, x)

1 if size(rf]=0 ..
2 then allocate table[T] with 1 slot ' Notice : If only

3 size[T] «- 1 ' insertions are

4 if numlT] = size[T] erformed, the i
5. then allocate new-table with 2 - size[T] slots ! P ’ |
6 insert all items in table[T] into new-table load ffactor ofa
. free table[T] table is always

8 table[T] « new-table at least 1/2.

9 size[T] « 2 - size(r})

10. insert x into table[T]
11. num[T] < num[T] +1

» When the table becomes full, double its size and reinsert all
existing items.

» Each time we actually insert an item into the table, it’s an
elementary insertion.

Running time analysis

» The running time of a sequence of n TABLE-INSERT operations on
an initially empty table ?

» Analysis(l) :
» c; = actual cost of ith operation.
» If not full, ¢, = 1.

» If full, have i — 1 items in the table at the start of the ith operation.
Have to copy all i — 1 existing items, then insert ith item = ¢, =i .

» noperations = c; = O(n) = O(n?) time for n operations.

Aggregate analysis

» Analysis(ll):
» Expand only wheni-1is an exact power of 2.

{i if 1—1 is exact power of 2,

1 otherwise.

I
1=
o
7
>
I
]
el

» Totol cost

1
-]
+

Accounting method

» Charge S3 per insertion of x.
» S1 pays for x’s insertion.
» S1 pays for x to be moved in the future.
» S1 pays for some other item to be moved.
» Suppose that the size of the table is m immediately after an
expansion.

» Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

» Will expand again after another m insertions.

» Each insertion will put S1 on one of the m items that were in the
table just after expansion and will put $1 on the item inserted.

» Have S2m of credit by next expansion, when there are 2m items to
move. Enough to pay for the expansion, with no credit left over!

» O(T) =2 num[T] - size[T]
» Initially, num[T] = size[T] =0 = ®(T) = 0.
» Just after expansion, size[T] =2 - num[T] = ®(T) = 0.

» Just before expansion, size[T] = num[T] = ®(T) = num[T]
= have enough potential to pay for moving all items.

» Always have ®(T) > 0.
num[T] = 1/2- size[T]
= 2 - num[T] = size[T]
= ®(T) 2 0.

» Amortized cost of ith operation:
num; = num[T] after ith operation,
size; = size[T] after ith operation,

D, = O after ith operation.

» If no expansion:

Ci+q)i_q)i-1

= 1+(2-num -size) — (2-num_, —size_,)
= 1+(2-num -size) — (2(num —1)-size)

o»
[l

Size = sSize |,
num = num, +1,

= 1.
\ = 1+2
» If expansion: = 3.

sze = 2-sze,

Size , = num,=num —1,
G = num,+1=num.
G = G+ -,
= num + (2-num,-size;) — (2-num,_ —sze,)
= num;+ (2-num, —2(num, -1)) - (2(num, —1)—(num; —1))

= num;+ 2— (num, —1)

32 — —

(N

Vish
24

16
I D;

» The above Figure plots the values of num,, size;, and ®@; against i.

» Notice how the potential builds to pay for the expansion of the
table.

» When a drops too low, contract the table.
» Allocate a new, smaller one.
» Copy all items.

» Preserve two properties
» load factor a bounded below by a positive constant, and
» amortized cost per operation bounded above by a constant.

» Obvious strategy
» Double size when inserting into a full table.
» Halve size when deletion would make table less than half full.
» Then always have 1/2 <a <1.

» Consider the following scenario

>
4

>
4

The first n/2 operations are insertions,

For the second n/2 operations, we perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,...
W_J . ~ J . ~ J . ~ J . ~ J
double halve double halve double

The cost of each expansion and contraction is ©(n).

The total cost of the n operations is ©(n?).

» Simple solution:

>
>
>
4

Double size when inserting into a full table.
Halve size when deleting from a 1/4 full table.
After either expansion or contraction, a = 1/2.
Always have 1/4 < o < 1.

» Observation 1:

» Need to delete half the items before contraction.
» Need to double number of items before expansion.

2-num([T]-size[T] ifa=1/2,

» L =
et (D(T) {gze[T]/Z—num[T] ifa<l/2.

» Tempty => D=0.
» =>1/2=>num=1/2:size = 2-num =size = ® >0.
» a<1/2=>num<1/2-size=> >0.

32 T I
| 1
! !
24 ¥ :
qgze;fl I
|
16 - - -
I \\ani \
I N
S >\\//\\ ‘ v
/ Oi| / /| \
A VT T TUA J
0 8 16 24 32 40 28

» The potential is never negative. Thus, the total amortized cost of

a sequence of operations with respect to @ is an upper bound
on the actual cost of the sequence.

» Observation 2:
» a=1/2 = ®d=2-num-2-num=0.
» a=1 = d®=2:-num-num=num.
» a=1/4 = & =size/2 -num =4 -num/2 - num = num.

» Therefore, when we double or halve, have enough potential to pay
for moving all num items.

» Let ¢; = actual cost of ith operation,
C. = amortized cost of ith operation,
num;=the number of items after the ith operation,
size; = the size of the table after the ith operation,
a; = the load factor of the table after the ith operation,
@, = the potential after the ith operation.

» Case l:a;, 21/2
» The same analysis as before.
» The amortized cost C = 3.

» Case2:a;_;<1/2 and a;<1/2 (no expansion)
G = G+ +i
= 1+(size;/2-num;) - (size_, /2—num,_;)
= 1+(size;/2-num;) — (size; / 2—(num; —1))
= 0.

» Case3:a;_;<1/2 and ;2 1/2 (no expansion)

¢ I+ (2-num, —sze;) — (size_ /2-num,_)
= 1+ (2 (numi_1+1)—sizei_1) - (Sizei_1 /Z_numi—l)

= 3-num_, — %-sizei_l+3
: 3 .
= 3.« 978, — 5-szei_l+3

: 3 .
< Sze, | - 5-szei_1+3

3.
2 T
= 3.

» Therefore, amortized cost of insert is at most 3.

» Casel:a; ,<1/2
» This implies a; < 1/2.
» If no contraction:

1+ (size; /2—num;) — (sizeji_; /2—numi_;)
1+(size; /2—num;) — (size; /2—(num; +1))
2.

G

» If contraction:

(num;i+1)+(size; /2—num;) — (sizei_; /2—num;_;)

Nk Ll

move + delete

size; /2 = sizei; 1 4 = numi,; = num; +1]

(num; +1)+ ((num; +1)—num;) = ((2-num; +2)—(num; +1))

G

» Case 2: a; , 21/2 (No contraction happens)
» Case2a:a;>1/2:

A

¢ = 1+(2-num-size) - (2-num_ -size)
= 1+(2-num - size) — (2-num +2-size)
= —1.

» Case2b: ;< 1/2:
Since a;,_; 2 1/2, we have
num;,=num,_,—-12%-size,_;—1="%"size;, - 1.
Thus, G I+ (size; /2-num;) — (2-num;

—sizei_l)
I+(sizej /2—num;) — (2-num; |

—Size;)

-1
-1

= -1+ 3-sizei_l— 3-num;
2

3 . 1 .
< -1+ —-Slze; _1 - 3(—-S|zei_1—1j
2 2

Summary

» Therefore, amortized cost of delete is at most 2.

» The amortized cost of each operation is bounded above by
a constant .

» The actual time for any sequence of n operations on a
dynamic table is O(n).

Insertion Only (o > 1/2)
C=0
lalbleld| | |]|

C=2 PayS$3(case 1a)
s1 S1
lalblc|dlel | | |

C=4 Pay$3
$1 $1 $1 $1
lalblcld]e[f] | |

C=6 Pay$3
$1 581 %1 $1 81 $1
lalblc|d]e|flg| |

C=8 PayS$S3
S1 $1 51 5151 S1 51 61
lalblc|dle|f[g|h]

C=2 Pay S$3(case 1b)
51 $1
lalblc|dle|flglhfi] | [[| | ||

Delection Only (o < 1/2)
C=0
[al blc|dlelflgfh| | | | [| |||

C=1 PayS$2(case 1a)
s1

lalblc|dle|[flg| | | [[[[|]|
C=2 Pay$2

S1 %1
lalblcldlelfl | | [[[[[][]

C=3 Pay$2
S1 61 61
lalblefdlel [[I [[| [[][]

C=4 Pay$S2
S1 $1 51 61

lalblefd] | | J [[[[]]]

C=1 PayS$1(case 1b)
s1

lblel | 111]

