Algorithms Chapter 17 Amortized Analysis

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Aggregate analysis
- ▶ The accounting method
- The potential method
- Dynamic tables

Amortized analysis

- Analyze a sequence of operations on a data structure.
- ▶ **Goal:** Show that although some individual operations may be expensive, on **average** the cost per operation is small.
 - Average in this context does not mean that we're averaging over a distribution of inputs.
- No probability is involved.
- We're talking about average cost in the worst case.
- We show that for all n, a sequence of n operations takes worst-case time T(n) in total.

Example 1: Stack operations

- ▶ Stack operations: PUSH(S, x), POP(S), and MULTIPOP(S, k).
- ▶ Push(S, x): push object x onto stack S.
 - \blacktriangleright Each runs in O(1) time.
 - \blacktriangleright A sequence of *n* Push operations takes O(n) time.
- ▶ Pop(S): pop the top of stack S and returns the popped object.
 - Each runs in O(1) time.
 - \blacktriangleright A sequence of n Pop operations takes O(n) time.
- \blacktriangleright MULTIPOP(S,k)
 - 1. while not STACK-EMPTY(S) and k > 0
 - Pop(S)
 - 3. $k \leftarrow k-1$

Running time analysis_{1/2}

- Running time of MULTIPOP(S,k):
 - ▶ Let each PUSH/POP cost O(1).
 - The number of iterations of while loop is min(s, k), where s = number of objects on stack.
 - ▶ Therefore, total cost = min(s, k).
- ▶ The running time of a sequence of *n* PUSH, POP, MULTIPOP operations?
- Analysis(I):
 - Worst-case cost of Multipop is O(n).
 - ▶ Have *n* operations.
 - ▶ Therefore, worst-case cost of sequence is $O(n^2)$.

Running time analysis_{2/2}

Analysis(II):

- ▶ Each object can be popped only once per time that it's pushed.
- ▶ At most *n* objects are pushed into *S*.
- ▶ Have $\leq n$ Pushes $\Rightarrow \leq n$ Pops, including those in Multipop.
- ▶ Therefore, total cost = O(n).
- Average cost of an operation = O(1).
- ▶ Emphasize again, no probabilistic reasoning was involved.
 - \blacktriangleright Showed worst-case O(n) cost for sequence.
 - \blacktriangleright Therefore, O(1) per operation on average.

Example 2: Incrementing a binary counter

- k-bit binary counter A[0..k-1] of bits
 - ▶ A[0] is the least significant bit.
 - ▶ A[k-1] is the most significant bit.
 - Value of counter is $\sum_{i=0}^{k-1} A[i] \cdot 2^i$.
- Initially, counter value is 0.
- ▶ To add 1 (modulo 2^k), we use the following procedure.

```
INCREMENT(A)

1. i \leftarrow 0

2. while i < k and A[i] = 1

3. A[i] \leftarrow 0

4. i \leftarrow i + 1

5. if i < k

6. then A[i] \leftarrow 1
```

```
Counter
                           Total
value
                           cost
       0 0 0 0 0 1
                            10
                            11
       0 0 0 0 1 0 0
       0 0 0 0 1 0
                           16
       0 0 0 0 1 0 1 0
                            18
                            19
        0 0 0 0 1 1 0 0
                           22
 13
        0 0 0 0 1 1 0 1
                           23
        0 0 0 0 1 1 1 0
                           25
                           26
 16
        0 0 0 1 0 0 0 0
                            31
```

Running time analysis

▶ The running time of a sequence of *n* INCREMENT operations?

Analysis(I):

- \blacktriangleright A single execution of INCREMENT takes time O(k) in the worst case.
- ▶ Have *n* operations.
- \blacktriangleright Therefore, worst-case cost of sequence is O(nK).
- Average cost of an operation = O(k).

Analysis(II):

- ▶ A[0] flips every time, A[1] flips only every other time, A[2] flips only every fourth time, and so on.
- ► Total number of flips is $T(n) = n + \lfloor n/2 \rfloor + \lfloor n/4 \rfloor + ...$ $\leq 2n$
- Average cost of an operation = O(1).

Outline

- Aggregate analysis
- ▶ The accounting method
- The potential method
- Dynamic tables

The accounting method $_{1/2}$

- Assign different charges to different operations.
 - Some are charged more than actual cost.
 - Some are charged less.
- ▶ The amount we charge an operation is called its amortized cost.
- When amortized cost > actual cost, store (amortized cost actual cost) on specific objects in the data structure as credit.
- Use credit later to pay for operations whose actual cost > amortized cost.
- Differs from aggregate analysis:
 - In the accounting method, different operations can have different costs.
 - ▶ In aggregate analysis, all operations have same cost.

The accounting method $_{2/2}$

- Need credit to never go negative.
 - Otherwise, have a sequence of operations for which the amortized cost is not an upper bound on actual cost.
 - Amortized cost would tell us nothing.
- Let c_i = actual cost of *i*th operation, \hat{c}_i = amortized cost of *i*th operation.
- ▶ Then require $\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$ for all sequences of n operations.
- Total credit stored in the data structure = $\sum_{i=1}^{n} \hat{c}_i \sum_{i=1}^{n} c_i$.

Example 1: Stack operations

operation	actual cost	amortized cost
Push	1	2
Рор	1	0
MULTIPOP	min(<i>k, s</i>)	0

- Intuition: When pushing an object, pay 2.
 - ▶ \$1 pays for the Push.
 - ▶ \$1 is prepayment for it being popped by either POP or MULTIPOP.
 - Since each object has \$1, which is credit, the credit ≥ 0.
 - ▶ Therefore, total amortized cost $\leq 2n$, is an upper bound on total actual cost.
 - Average cost of an operation = O(1).

Example 2: Incrementing a binary counter

▶ Charge \$2 to set a bit to 1.

- ▶ \$1 pays for setting a bit to 1.
- ▶ \$1 is prepayment for flipping it back to 0.
- ▶ Have \$1 of credit for every 1 in the counter.
- ▶ Therefore, credit \geq 0.

Amortized cost of INCREMENT:

- Cost of resetting bits to 0 is paid by credit.
- ▶ At most 1 bit is set to 1.
- Therefore, amortized cost ≤ \$2.
- For *n* operations, amortized cost = O(n).
- Average cost of an operation = O(1).

Outline

- Aggregate analysis
- ▶ The accounting method
- ▶ The potential method
- Dynamic tables

The Potential method_{1/2}

- Like the accounting method, but think of the credit as **potential** stored with the **entire data structure**.
 - Can release potential to pay for future operations.
 - Most flexible of the amortized analysis methods.
- Let D_i = data structure after *i*th operation, D_0 = initial data structure, c_i = actual cost of *i*th operation, \hat{c}_i = amortized cost of *i*th operation.
- ▶ Potential function $\Phi: D_i \to R$
 - $\Phi(D_i)$ is the potential associated with data structure D_i .

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

increase in potential due to ith operation

The Potential method_{2/2}

$$\begin{aligned} & \text{Total amortized cost} = \sum_{i=1}^{n} \hat{c}_{i} \\ & = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) \\ & = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}). \end{aligned}$$

- If we require that $\Phi(D_i) \ge \Phi(D_0)$ for all i, then the amortized cost is always an upper bound on actual cost.
- ▶ In practice: $\Phi(D_0) = 0$, $\Phi(D_i) \ge 0$ for all i.

Example 1: Stack operations

- Φ = # of objects in stack.
- $D_0 = \text{empty stack} \Rightarrow \Phi(D_0) = 0.$
- ▶ Since # of objects in stack ≥ 0 , $\Phi(D_i) \geq 0 = \Phi(D_0)$ for all i.

operation	actual cost	$\Phi(D_i) - \Phi(D_{i-1})$	amortized cost	
PUSH	1	(s+1)-s=1	1 + 1 = 2	
Рор	1	(s-1)-s=-1	1 - 1 = 0	
MULTIPOP	$k' = \min(k, s)$	(s-k')-s=-k'	k'-k'=0	
s = # of objects initially.				

▶ Therefore, amortized cost of a sequence of *n* operations

$$=\sum_{i=1}^n \hat{c}_i = O(n).$$

Example 2: Incrementing a binary counter_{1/2}

- $\Phi = b_i = \#$ of 1's after *i*th INCREMENT.
- ▶ D_0 = all bits are set to zero $\Rightarrow \Phi(D_0) = 0$.
- \blacktriangleright Suppose *i*th operation resets t_i bits to 0.
 - ▶ $c_i \le t_i + 1$. (resets t_i bits, sets at most one bit to 1)
 - If $b_i = 0$, the *i*th operation reset all *k* bits and didn't set one, so $b_{i-1} = t_i = k \Rightarrow b_i = b_{i-1} t_i$.
 - If $b_i > 0$, the *i*th operation reset t_i bits, set one, so $b_i = b_{i-1} t_i + 1$.
 - ► In either case, $b_i \le b_{i-1} t_i + 1$.

Example 2: Incrementing a binary counter_{2/2}

- Therefore, $\Phi(D_i) \Phi(D_{i-1}) = b_i b_{i-1}$ $\leq (b_{i-1} - t_i + 1) - b_{i-1}$ $= 1 - t_i$.
- The amortized cost is therefore $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$ $\leq (t_i + 1) + (1 - t_i)$ = 2.
- Thus, amortized cost of n operations = $\sum_{i=1}^{n} \hat{c}_i = O(n)$.

Outline

- Aggregate analysis
- ▶ The accounting method
- The potential method
- Dynamic tables

Dynamic tables_{1/2}

Scenario

- ▶ Have a table maybe a hash table.
- Don't know in advance how many objects will be stored in it.
- ▶ When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
- When it gets sufficiently small, might want to reallocate with a smaller size.
- ▶ Initially, *T* is a table of size 0.
- Perform a sequence of n operations on T, each of which is either Insert or Delete.

Goals

- \triangleright O(1) amortized time per operation.
- ▶ Unused space always ≤ constant fraction of allocated space.

Dynamic tables_{2/2}

\blacktriangleright Load factor $\alpha(T)$

- $\qquad \alpha(T) = \text{num}[T]/\text{size}[T]$
 - ▶ num[T] = # items stored, size[T] = allocated size.
- If size[T] = 0, then num[T] = 0. Define α = 1.
- Never allow $\alpha > 1$.
- Keep α > a constant fraction.

Table expansion

```
TABLE-INSERT (T, x)
      if size [T] = 0
           then allocate table[T] with 1 slot
2.
                  size[T] \leftarrow 1
3.
      if num[T] = size[T]
           then allocate new-table with 2 \cdot \text{size}[T] slots
5.
                  insert all items in table[T] into new-table
                  free table[T]
7.
                  table[T] \leftarrow new-table
                  size[T] \leftarrow 2 \cdot size[T]
9.
      insert x into table[T]
      num[T] \leftarrow num[T] + 1
11.
```

Notice: If only insertions are performed, the load factor of a table is always at least 1/2.

- When the table becomes full, double its size and reinsert all existing items.
- ► Each time we actually insert an item into the table, it's an elementary insertion.

Running time analysis

▶ The running time of a sequence of n TABLE-INSERT operations on an initially empty table ?

Analysis(I):

- $ightharpoonup c_i$ = actual cost of *i*th operation.
- If not full, $c_i = 1$.
- ▶ If full, have i-1 items in the table at the start of the *i*th operation. Have to copy all i-1 existing items, then insert *i*th item $\Rightarrow c_i = i$.
- ▶ *n* operations $\Rightarrow c_i = O(n) \Rightarrow O(n^2)$ time for *n* operations.

Aggregate analysis

Analysis(II):

 \blacktriangleright Expand only when i-1 is an exact power of 2.

$$c_i = \begin{cases} i & \text{if } i-1 \text{ is exact power of } 2, \\ 1 & \text{otherwise.} \end{cases}$$

Totol cost =
$$\sum_{i=1}^{n} c_{i} \leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^{j}$$

$$= n + \frac{2^{\lfloor \lg n \rfloor + 1} - 1}{2 - 1}$$

$$< n + 2n$$

$$= 3n$$

▶ Therefore, **aggregate analysis** says amortized cost per operation = 3.

Accounting method

- Charge \$3 per insertion of x.
 - ▶ \$1 pays for x's insertion.
 - ▶ \$1 pays for *x* to be moved in the future.
 - ▶ \$1 pays for some other item to be moved.
- Suppose that the size of the table is m immediately after an expansion.
 - Assume that the expansion used up all the credit, so that there's no credit stored after the expansion.
 - Will expand again after another m insertions.
 - ▶ Each insertion will put \$1 on one of the *m* items that were in the table just after expansion and will put \$1 on the item inserted.
 - ▶ Have \$2*m* of credit by next expansion, when there are 2*m* items to move. Enough to pay for the expansion, with no credit left over!

Potential method_{1/3}

- $\Phi(T) = 2 \cdot \text{num}[T] \text{size}[T]$
 - Initially, num[T] = size[T] = $0 \Rightarrow \Phi(T) = 0$.
 - ▶ Just after expansion, size[T] = $2 \cdot \text{num}[T] \Rightarrow \Phi(T) = 0$.
 - ▶ Just before expansion, size[T] = num[T] $\Rightarrow \Phi(T)$ = num[T] \Rightarrow have enough potential to pay for moving all items.
 - Always have $\Phi(T) \ge 0$. $\operatorname{num}[T] \ge 1/2 \cdot \operatorname{size}[T]$ $\Rightarrow 2 \cdot \operatorname{num}[T] \ge \operatorname{size}[T]$ $\Rightarrow \Phi(T) \ge 0$.

Amortized cost of ith operation:

```
num_i = num[T] after ith operation,

size_i = size[T] after ith operation ,

\Phi_i = \Phi after ith operation.
```

Potential method_{2/3}

If no expansion:

$$size_i = size_{i-1},$$

 $num_i = num_{i-1} + 1,$
 $c_i = 1.$

$$\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}
= 1 + (2 \cdot num_{i} - size_{i}) - (2 \cdot num_{i-1} - size_{i-1})
= 1 + (2 \cdot num_{i} - size_{i}) - (2(num_{i} - 1) - size_{i})
= 1 + 2
= 3.$$

If expansion:

$$\begin{aligned} size_{i} &= 2 \cdot size_{i-1}, \\ size_{i-1} &= num_{i-1} = num_{i} - 1, \\ c_{i} &= num_{i-1} + 1 = num_{i}. \\ \hat{c}_{i} &= c_{i} + \Phi_{i} - \Phi_{i-1} \\ &= num_{i} + \left(2 \cdot num_{i} - size_{i}\right) - \left(2 \cdot num_{i-1} - size_{i-1}\right) \\ &= num_{i} + \left(2 \cdot num_{i} - 2\left(num_{i} - 1\right)\right) - \left(2\left(num_{i} - 1\right) - \left(num_{i} - 1\right)\right) \\ &= num_{i} + 2 - \left(num_{i} - 1\right) \end{aligned}$$

Potential method_{3/3}

- ▶ The above Figure plots the values of num_i , $size_i$, and Φ_i against i.
- Notice how the potential builds to pay for the expansion of the table.

Expansion and contraction_{1/2}

- When α drops too low, contract the table.
 - Allocate a new, smaller one.
 - Copy all items.

Preserve two properties

- \blacktriangleright load factor α bounded below by a positive constant, and
- amortized cost per operation bounded above by a constant.

Obvious strategy

- Double size when inserting into a full table.
- Halve size when deletion would make table less than half full.
- ▶ Then always have $1/2 \le \alpha \le 1$.

Expansion and contraction_{2/2}

Consider the following scenario

halve

- ▶ The first n/2 operations are insertions,
- For the second n/2 operations, we perform the following sequence: insert, delete, delete, insert, insert, delete, insert, insert,...

halve

double

▶ The cost of each expansion and contraction is $\Theta(n)$.

double

▶ The total cost of the *n* operations is $\Theta(n^2)$.

Simple solution:

double

- Double size when inserting into a full table.
- ▶ Halve size when deleting from a 1/4 full table.
- After either expansion or contraction, $\alpha = 1/2$.
- ▶ Always have $1/4 \le \alpha \le 1$.

Some properties_{1/3}

Observation 1:

- Need to delete half the items before contraction.
- Need to double number of items before expansion.
- Let $\Phi(T) = \begin{cases} 2 \cdot num[T] size[T] & \text{if } \alpha \ge 1/2, \\ size[T]/2 num[T] & \text{if } \alpha < 1/2. \end{cases}$
 - $T \text{ empty} \Rightarrow \Phi = 0$.
 - ▶ $\alpha \ge 1/2 \Rightarrow \text{num} \ge 1/2 \cdot \text{size} \Rightarrow 2 \cdot \text{num} \ge \text{size} \Rightarrow \Phi \ge 0$.
 - ▶ $\alpha < 1/2 \Rightarrow \text{num} < 1/2 \cdot \text{size} \Rightarrow \Phi \ge 0$.

Some properties_{2/3}

▶ The potential is never negative. Thus, the total amortized cost of a sequence of operations with respect to Φ is an upper bound on the actual cost of the sequence.

Some properties_{3/3}

Observation 2:

- $\alpha = 1/2 \Rightarrow \Phi = 2 \cdot \text{num} 2 \cdot \text{num} = 0.$
- $\alpha = 1 \Rightarrow \Phi = 2 \cdot \text{num} \text{num} = \text{num}$
- $\alpha = 1/4 \Rightarrow \Phi = \text{size}/2 \text{num} = 4 \cdot \text{num}/2 \text{num} = \text{num}$
- ▶ Therefore, when we double or halve, have enough potential to pay for moving all num items.
- Let c_i = actual cost of ith operation, \hat{c}_i = amortized cost of ith operation, num_i = the number of items after the ith operation, $size_i$ = the size of the table after the ith operation, α_i = the load factor of the table after the ith operation, Φ_i = the potential after the ith operation.

Analysis: insert operation_{1/2}

- ► Case 1: $α_{i-1} ≥ 1/2$
 - ▶ The same analysis as before.
 - The amortized cost $\hat{c}_i = 3$.
- ► Case 2: α_{i-1} < 1/2 and α_i < 1/2 (no expansion)

```
\hat{c}_{i} = c_{i} + \Phi_{i} + \Phi_{i-1} 

= 1 + (size_{i} / 2 - num_{i}) - (size_{i-1} / 2 - num_{i-1}) 

= 1 + (size_{i} / 2 - num_{i}) - (size_{i} / 2 - (num_{i} - 1)) 

= 0.
```

Analysis: insert operation_{2/2}

► Case 3: $\alpha_{i-1} < 1/2$ and $\alpha_i \ge 1/2$ (no expansion)

$$\hat{c}_{i} = 1 + (2 \cdot num_{i} - size_{i}) - (size_{i-1} / 2 - num_{i-1})
= 1 + (2 (num_{i-1} + 1) - size_{i-1}) - (size_{i-1} / 2 - num_{i-1})
= 3 \cdot num_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3
= 3 \cdot \alpha_{i-1} size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3
< \frac{3}{2} \cdot size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3
= 3.$$

▶ Therefore, amortized cost of insert is at most 3.

Analysis: delete operation $_{1/3}$

- Case 1: $\alpha_{i-1} < 1/2$
 - ▶ This implies α_i < 1/2.
 - If no contraction:

$$\hat{c}_{i} = 1 + (size_{i} / 2 - num_{i}) - (size_{i-1} / 2 - num_{i-1})
= 1 + (size_{i} / 2 - num_{i}) - (size_{i} / 2 - (num_{i} + 1))
= 2.$$

If contraction:

```
\hat{c}_{i} = \underbrace{(num_{i}+1) + (size_{i}/2 - num_{i}) - (size_{i-1}/2 - num_{i-1})}_{\text{move} + \text{delete}}
\underbrace{[size_{i}/2 = size_{i-1}/4 = num_{i-1} = num_{i} + 1]}_{\text{e}} = \underbrace{(num_{i}+1) + ((num_{i}+1) - num_{i}) - ((2 \cdot num_{i}+2) - (num_{i}+1))}_{\text{e}}
= 1.
```

Analysis: delete operation $_{1/2}$

- ► Case 2: $\alpha_{i-1} \ge 1/2$ (No contraction happens)
 - ► Case 2a: $\alpha_i \ge 1/2$:

$$\hat{c}_{i} = 1 + (2 \cdot num_{i} - size_{i}) - (2 \cdot num_{i-1} - size_{i-1})
= 1 + (2 \cdot num_{i} - size_{i}) - (2 \cdot num_{i} + 2 - size_{i})
= -1.$$

• Case 2b: $\alpha_i < 1/2$:

Since $\alpha_{i-1} \ge 1/2$, we have

$$num_i = num_{i-1} - 1 \ge \frac{1}{2} \cdot size_{i-1} - 1 = \frac{1}{2} \cdot size_i - 1.$$

Thus,
$$\hat{c}_{i} = 1 + (size_{i}/2 - num_{i}) - (2 \cdot num_{i-1} - size_{i-1})$$

 $= 1 + (size_{i}/2 - num_{i}) - (2 \cdot num_{i-1} - size_{i})$
 $= -1 + \frac{3}{2} \cdot size_{i-1} - 3 \cdot num_{i}$
 $\leq -1 + \frac{3}{2} \cdot size_{i-1} - 3 \left(\frac{1}{2} \cdot size_{i-1} - 1\right)$

Summary

- ▶ Therefore, amortized cost of delete is at most 2.
- The amortized cost of each operation is bounded above by a constant.
- The actual time for any sequence of n operations on a dynamic table is O(n).

Insertion Only ($\alpha \ge 1/2$)

Delection Only ($\alpha \le 1/2$)

